• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Melanoma models for chemoprevention and ultraviolet radiation susceptibility

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3016511_sip1_m.pdf
    Size:
    3.503Mb
    Format:
    PDF
    Download
    Author
    Lluria-Prevatt, Maria del Carmen
    Issue Date
    2001
    Keywords
    Health Sciences, Oncology.
    Advisor
    Briehl, Margaret
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Worldwide the incidence rate of melanoma has risen while other cancer trends decrease. Late stages of melanoma carry a severe prognosis and the cancer is one that afflicts young adults relatively frequent. Treatment options are very few and survival rates remain low in metastatic disease. Models for evaluating new treatments, chemoprevention and melanoma progression are needed. The first model system described here involves the use of chemical carcinogenesis to induce melanoma in a transgenic mouse system, the TPras mouse. The analysis of tumors that developed on these mice demonstrates that this model system has genetic alterations that are much like the human disease, namely the loss or alteration of the tumor suppressor p16 protein, increase in Ras protein and altered PKC expression. The in vitro system from the TP-ras mouse is also used to compliment the in vivo studies for the effectiveness of perillyl alcohol (POH) as a chemoprevention agent of melanoma in the TPras mice. The mechanisms of POH activity are a decrease in Ras protein levels as well as ras downstream effectors, Akt and MAPK. POH causes only a slight increase in apoptosis while it greatly diminishes the production of UV induced reactive oxygen species (ROS). The activity of POH in vitro suggests a mechanism for the chemopreventive effect seen with POH in the TPras mice. The second model described herein mimics the human risk factor for melanoma of light pigmentation. An increase in UV induced tumors is demonstrated in the Avy mice, which are a lighter pigmented mouse than the TPras mice. Thymine dimer production in vitro demonstrated only a mild sunscreen effect of the darker pigmented melanocytes. However the evaluation of ROS production induced by UV indicated that the melanocytes from the lighter pigmented mouse were able to produce much greater levels of ROS both from UVB and UVA induction. These studies suggest that oxidative damage may contribute to melanoma susceptibility in lighter pigmented individuals. In summary, this work has validated the Avy and TPras mouse models for studying risk factors and testing chemoprevention agents, respectively, in melanoma.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Cancer Biology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.