• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Space-based data management for high-performance distributed simulation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3023487_sip1_m.pdf
    Size:
    3.635Mb
    Format:
    PDF
    Download
    Author
    Lee, Jong Sik
    Issue Date
    2001
    Keywords
    Engineering, Chemical.
    Computer Science.
    Advisor
    Zeigler, Bernard P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    There is a rapidly growing demand to model and simulate complex large-scale distributed systems and to collaboratively share geographically dispersed data assets and computing resources to perform such distributed simulation with reasonable communication and computation resources. Interest management schemes have been studied in the literature. In this dissertation we propose an interest-based quantization scheme that is created by combining a quantization scheme and an interest management scheme. We show that this approach provides a superior solution to reduce message traffic and network data transmission load. As an environmental platform for data distribution management, we extended the DEVS/HLA distributed modeling and simulation environment. This environment allows us to study interest-based quantization schemes in order to achieve effective reduction of data communication in distributed simulation. In this environment, system modeling is provided by the DEVS (Discrete Event System Specification) formalism and supports effective modeling based on hierarchical and modular object-oriented technology. Distributed simulation is performed by a highly reliable facility using the HLA (High Level Architecture). The extended DEVS/HLA environment, called DEVS/GDDM (Generic Data Distribution Management), provides a high level abstraction to specify a set of interest-based quantization schemes. This dissertation presents a performance analysis of centralized and distributed configurations to study the scalability of the interest-based quantization schemes. These results illustrate the advantages of using space-based quantization in reducing both network load and overall simulation execution time. A real world application, relating to ballistic missiles simulation, demonstrates the operation of the DEVS/GDDM environment. Theoretical and empirical results of the ballistic missiles application show that the space-based quantization scheme, especially with predictive and multiplexing extensions, is very effective and scalable due to reduced local computation demands and extremely favorable communication data reduction with a reasonably small potential for error. This realistic case study establishes that the DEVS/GDDM environment can provide scalable distributed simulation for practical, real-world applications.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Electrical and Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.