• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    High-concentration erbium-doped glasses, fiber amplifiers and lasers

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3023495_sip1_m.pdf
    Size:
    2.471Mb
    Format:
    PDF
    Download
    Author
    Hu, Yongdan
    Issue Date
    2001
    Keywords
    Physics, Optics.
    Advisor
    Peyghambarian, Nasser
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Upconversion coefficients in a new high-concentration erbium-doped tellurite glass were obtained a schematic study of experiments and modeling. The upconversion coefficient for ⁴I₁₃/₂ + ⁴I₁₃/₂ → ⁴I₉/₂ + ⁴I₁₅/₂ is found to be 2.74 x 10⁻¹⁸ cm³/s and for ⁴I₁₁/₂ + ⁴I₁₁/₂ → ⁴I₁₅/₂ + ²F₇/₂ is 1.09 x 10⁻¹⁸ cm³/s. The performance of high concentration Er³⁺+-Yb³⁺ -codoped phosphate fiber amplifiers and the performance of a high-power Er³⁺-Yb³⁺-codoped phosphate fiber laser were presented. From a 3.6cm-long fiber, 18 dB internal gain i.e. 5 dB/cm, for small signal input at 1535 nm, was achieved. With a cleaved facet as the output mirror, a fiber laser has been demonstrated from the same fiber with an output power of 33.8 mW at 1549.92 nm. A high slope efficiency of 40.2% was observed. Modeling results of gain and noise figure of four phosphate EDFAs with different lengths were presented with previous measured results. 34% erbium ions were found to be paired in our 3.5wt% erbium-doped phosphate fiber amplifiers. The onset of erbium concentration for pair induced quenching is suggested to be around 3wt% in phosphate fiber amplifiers.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.