• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Optical performance of bimetallic mirrors in thermal environments

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3023497_sip1_m.pdf
    Size:
    4.341Mb
    Format:
    PDF
    Download
    Author
    Moon, Il Kweon
    Issue Date
    2001
    Keywords
    Engineering, Civil.
    Engineering, Mechanical.
    Physics, Optics.
    Advisor
    Richard, Ralph M.
    Cho, Myung K.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Evaluation of the optical performances of bimetallic mirrors with various substrate shapes was conducted using the finite element analysis program, SDRC-IDEAS. In these analyses, two different plating materials, nickel and aluminum were considered for an aluminum and a beryllium mirror substrate. Thermal environments used in this study are: a unit thermal soak (temperature difference), an axial temperature distribution, and radial temperature distributions on the mirror substrate. The goal of this study is to optimize the optical surface quality for various plating thicknessess. Surface errors, individual aberration terms, such as piston, tilts, focus and other aberrations were obtained by the program PCFRINGE. It was found that the optical performances of bimetallic mirrors depend on the plating material, plating thickness, and the mirror substrate materials. The optimum plating thickness combinations were determined based on plating material and mirror substrate with variation of temperature distributions. The results were compared with the optical surface errors and the corrected surface errors. The results indicate that there does not exist a definite common rule for the optimum, but a detailed analysis such as presented herein is generally needed to design bimetallic mirrors in a thermal environment.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Civil Engineering and Engineering Mechanics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.