• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Magnetic resonance investigations of iron tetrapyrrolic macrocycles

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3023525_sip1_m.pdf
    Size:
    5.586Mb
    Format:
    PDF
    Download
    Author
    Cai, Sheng
    Issue Date
    2001
    Keywords
    Chemistry, Inorganic.
    Advisor
    Walker, F. Ann
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    ¹H NMR and EPR techniques were used to investigate the electron spin distribution and electronic ground state in several iron tetrapyrrolic macrocycles. The first macrocycle studied is corrole, including [(Me₈C)FeCl] (Me₈C = 2,3,7,8,12,13,17,18-octamethylcorrole) and [(7,13-Me₂Et₆C)FeCl] (7,13-Me₂Et₆C = 7,13-dimethyl-2,3,8,12,17,18-hexaethylcorrole) and four meso-substituted corrolates--[(TPCorr)FeCl], [(4-NO2TPCorr)FeCl], [(4-MeOTPCorr)FeCl] and [(TPCorr)FeClO₄] (TPCorr = 5,10,15-triphenylcorrole). These chloroiron corrolates were all found to be S = 3/2 intermediate-spin iron(III) π cation radical complexes, with the corrole radical strongly antiferromagnetically coupled to the spins of the iron, leading to an overall spin of 1 and large negative π spin densities on the meso positions. Upon addition of imidazole ligands, [(Me₈C)FeCl] and [(7,13-Me₂Et₆C)FeCl2] change to bis imidazole low-spin iron(III) π cation radical species at low temperature. There is little or no ferromagnetic coupling between the radical and the iron center, resulting in large position pi spin densities on the meso positions. The binding of cyanide to [(7,13-Me₂Et₆C)FeCl] causes autoreduction of the complex. An excess of cyanide in the solution can reduce the bis-cyanide complex, a low-spin iron(III) π cation radical which is produced first upon addition of cyanide, to the mono-cyanide complex, which is a normal low-spin iron(III) five-coordinate complex. The redox reaction occurs on the corrole ring instead of at the iron center. Proton relaxation times (T₁ and T₂) of a pyrrole-CH₃ peak from the heme domain of the chicken liver sulfite oxidase were measured by NMR methods. From the relaxation times, it is found that the sulfite oxidase enzyme tumbles as the whole protein rather than the larger Mo domain and the smaller heme domain tumbling somewhat independently. The last macrocycles investigated are chlorins and mono-oxochlorin. Both high-spin tetraphenylchlorinatoiron(III) chloride (TPCFeCl) and octaethylchlorinatoiron(III) chloride (OECFeCl) and their low-spin complexes with different imidazole and pyridine ligands were studied by NMR and EPR. The full peak assignments were made for all high-spin and low-spin species from COSY, NOESY, NOE difference and saturation transfer experiments. The NMR results show that, like TPPFe(III) and TMPFe(III) complexes, the low-spin TPCFe(III) complexes change their ground state from (dxy)²(dxzdyz)³ to (dxzdyz)⁴(dxy)¹ with decrease in the donor strength of the axial ligands, while OECFe(III) complexes keep their ground state unchanged (always (dxy)²(dxydyz)³) with different axial ligands in the temperature range of NMR experiments (+30°C to -90°C)). However, EPR data show that both TPCFe(III) and OECFe(III) complexes have the trend of change to (dxzdyz)⁴(dxy)¹ ground state with weak donor ligands (such 4-cyanopyridine). The electronic structure of [OECFe(t-BuNC)₂]⁺ is the (dxzdyz)⁴(dxy)¹ ground state with a low-lying (dxy)²(d xzdyz)³ excited state. The chlorin ring of [OECFe(tBuNC)₂]⁺ is probably ruffled, as in [OEPFe(t-BuNC)₂]⁺. The NMR spectrum of [OECFe(t-BuNC)₂]⁺ is characterized by the large downfield shift of the pyrrolene protons, indicating the involvement of the A-1 orbital in the spin distribution mechanism. [mono-oxo-OECFe(Im-d₄)₂]Cl (mono-oxo-OEC = 2-oxo-3,3',7,8,12,13,17,18-octaethyl-chlorin) is a low-spin Fe(III) complex with (dxy)²(dxzdyz)³ ground state. The pattern of the chemical shifts of the pyrrole-CH2 and meso protons is similar to that of [OECFe(Im-d₄)₂]Cl, except that more peaks were observed due to its lower symmetry. Finally, DFT calculation on high-spin iron (III) chlorin was carried out to predict the Fermi contact shifts and spin distribution mechanism.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.