• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Detailed study of the Yarkovsky effect on asteroids and solar system implications

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3026568_sip1_m.pdf
    Size:
    3.912Mb
    Format:
    PDF
    Download
    Author
    Spitale, Joseph Nicholas
    Issue Date
    2001
    Keywords
    Physics, Astronomy and Astrophysics.
    Advisor
    Greenberg, Richard J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The Yarkovsky effect is a change in a body's orbit caused by its reaction to the momentum carried away by the thermal photons that it emits. This effect may play a key role in the orbital evolution of asteroids and near-Earth objects. To evaluate the Yarkovsky acceleration under a wide range of conditions, I have developed a three-dimensional finite-difference solution to the heat equation. This approach employs neither the linearized boundary conditions, the plane-parallel heat flow approximation, nor the assumption of fast rotation used in earlier approaches (Rubincam, 1998; Vokrouhlickỳ and Farinella, 1998). Thus it can be used to explore a wide range of orbital elements and physical properties that had not been previously accessible. I use the finite-difference approach to compute Yarkovsky perturbations for homogeneous, spherical stony bodies with 1-, 10- and 100-m diameters. For a 1-m scale body rotating with a 5-h period, the semimajor axis can change as much as 1 AU in 1 Myr and the eccentricity can change as much as 0.1 in 1 Myr. These rates are much faster than any found previously because those treatments were not valid for very eccentric orbits. For rotation periods expected to be more typical of such small bodies, these rates would be considerably slower. Nevertheless, there is no data concerning rotation rates for small bodies so these fast rates may be relevant. Yarkovsky drift rates are computed for models of specific near-Earth asteroids, demonstrating that the shape of a body is important in computing its precise Yarkovsky effect. Such calculations may be useful for assessing observable Yarkovsky perturbations and in predicting and mitigating NEA hazards. The approach presented in this dissertation is the only current one with the potential to rigorously treat bodies with arbitrary shapes.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Planetary Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.