• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Characterization and remediation of pathogen, solvent, and petroleum contaminated aquifers

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3026582_sip1_m.pdf
    Size:
    5.830Mb
    Format:
    PDF
    Download
    Author
    Blanford, William James
    Issue Date
    2001
    Keywords
    Hydrology.
    Engineering, Environmental.
    Advisor
    Brusseau, Mark L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This work contains the results of studies of three fluid projects that investigated aspects of groundwater contaminant transport and remediation. The first project performed at Hill Air Force Base in Utah evaluated the performance of a vertical water flushing system for the remediation of a multi-component non-aqueous phase liquid. This project also encompassed determining contaminant distribution through soil core analysis and partitioning tracer studies. The work determined that the limited aqueous solubility of the primary contaminants led to the lack of efficient removal by the vertical water flushing system. The second remediation test evaluated the performance of the solubility enhancing agent cyclodextrin in restoring the contaminated aquifer at Air Force Plant 44 in Tucson, Arizona. The results concluded that this advanced remediation technique was efficient in removing trichloroethene. Further, the project demonstrated the ability to separate TCE from the extracted solution through treatment with an air-stripping system and re-inject it for another multiple flushing of the aquifer. Additional site assessment including determination of lithological and contaminant distribution through well-bore sampling and system optimization by conducting a series of vertical tracer studies. To evaluate the impact of groundwater chemistry and travel distances on the transport behavior of enteric virus, experiments were conducted in the unconfined aquifer at the USGS Cape Cod Research Site. Separate experiments examined the transport behavior of bromide (Br-) and the bacteriophage PRD-1 in the effluent plume and the shallower uncontaminated groundwater. Results indicated the vast majority of the bacteriophages were lost from solution upon injection. The results further showed that this initial loss occurred within the first meter for the uncontaminated zone, whereas it occurred over a 4-meter distance in the contaminated zone. The greater distance required for the contaminated zone to defect similar mass loss is attributed to anion-exchange competition by organic matter, phosphate, and other anions present in higher concentrations in the contaminated zone. The results of this study indicate that a small, but infectious fraction of viable virus particles can persist and travel significant distances in sedimentary aquifers, despite variability in water chemistry.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Hydrology and Water Resources
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.