• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Functional characteristics of heterogeneous Cx40/Cx43 gap junction channel formation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3031371_sip1_m.pdf
    Size:
    2.770Mb
    Format:
    PDF
    Download
    Author
    Cottrell, Graham Trevor
    Issue Date
    2001
    Keywords
    Biology, Cell.
    Advisor
    Burt, Janis M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Cells of the cardiovascular system express multiple connexins (Cx) with Cx40 and Cx43 being commonly coexpressed in many tissues. The expression levels of connexins are dynamic and can vary in response to a growth stimulus. It is not clear why cells express multiple connexins, or what advantage such dynamic regulation of expression patterns have on cell function. These issues are further complicated by the ability of some connexins to interact to form heterogeneous gap junction channels, with little being known regarding functional properties of such channels. The purpose of these experiments was threefold: (1) To determine whether Cx40 and Cx43 are capable of interacting to form heteromeric/heterotypic gap junction channels; (2) To characterize the functional properties of Cx40/Cx43 heteromeric/heterotypic channels; and (3) To determine the effect that changing Cx40:Cx43 expression ratio has on functional properties of heteromeric/heterotypic channels. Cell lines were developed that express only Cx43 (Rin43), Cx40 (Rin40), and Cx40 and Cx43 in varying Cx40:Cx43 expression ratios (6B5n, A7r5, A7r540C1, and A7r540C3). The Cx40:Cx43 expression ratios in the 6B5N, A7r5, A7r540C1, and A7r540C3 cells are approximately 1:1, 3:1, 5:1, and 10:1, respectively. Functional properties of the gap junction channels formed between these cells were determined using both electrophysiological and dye coupling techniques. Pairing of Rin43 and Rin40 cells demonstrated that Cx40 and Cx43 are capable of forming homomeric/heterotypic gap junctions with unique voltage-dependent gating and single channel behaviors. Rin43/A7r5 cell pairs displayed voltage-dependent gating and single channel conductance profiles that could only be explained by the presence of heteromeric/heterotypic gap junction channels between these cells. Pairing Rin43 cells with coexpressing cells of high Cx40:Cx43 expression ratio resulted in channel activities that were not predicted by the gating and conductance patterns of Cx40/Cx43 heterotypic channels. However, the dye coupling characteristics of these same cells in coculture demonstrated that the permeability of the channels formed between these cell types reflected that of Cx40 channels. In summary, Cx40 and Cx43 are capable of forming heteromeric/heterotypic gap junction channels. Increasing the Cx40:Cx43 ratio in coexpressing cells results in channels with unique gating and conductance properties, however dye permeability of these cells is predicted by their relative Cx40 content. Therefore, varying Cx40:Cx43 expression ratio provides cells with a mechanism to finely control the types of molecules shared between cells.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Interdisciplinary Program in Physiological Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.