• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    RTDEVS/CORBA: A distributed object computing environment for simulation-based design of real-time discrete event systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3040115_sip1_m.pdf
    Size:
    2.235Mb
    Format:
    PDF
    Download
    Author
    Cho, Yŏng-gwan
    Issue Date
    2001
    Keywords
    Engineering, Electronics and Electrical.
    Computer Science.
    Advisor
    Zeigler, Bernard P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Ever since distributed systems technology became increasingly popular in the real-time computing area about two decades ago, real-time distributed object computing technologies have been attracting more attention from researchers and engineers. While highly effective object-oriented methodologies are now widely adopted to reduce the development complexity and maintenance costs of large scale non-real-time software applications, real-time systems engineering practice has not kept pace with these system development methodologies. Indeed, real-time design techniques have not fully adopted the concepts of modular design and analysis which are the main virtues of object-oriented design technologies. As a consequence, the demand for object-oriented analysis, design, and implementation of large-scale real-time applications has been growing. To address the need for object-oriented real-time systems engineering environments we propose the Real-Time DEVS/CORBA (RTDEVS/CORBA) distributed object computing environment. In this dissertation, we show how this environment is an extension of previously developed DEVS-based modeling and simulation frameworks that have been shown to support an effective modeling and simulation methodology in various application areas. The major objective in developing Distributed Real-Time DEVS/CORBA is to establish a framework in which distributed real-time systems can be designed through DEVS-based modeling and simulation studies, and then migrated with minimal additional effort to be executed in the real-time distributed environment. This environment provides generic support for developing models of distributed embedded software systems, evaluating their performance and timing behavior through simulation and easing the transition from the simulation to actual executions. In this dissertation we describe, in some detail, the design and implementation of the RTDEVS/CORBA environment. It was implemented over Visibroker CORBA middleware along with the use of ACE/TAO real-time CORBA services, such as the real-time event service and the runtime scheduling service. Implementation aspects considered include time synchronization issues, priority-based message dispatching for timely message delivery, implementation of activity with threads, and other features required for simulating and executing real-time DEVS models. Finally, application examples are presented in the last part of the dissertation to show applicability of the environment to real systems-engineering problems.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Electrical and Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.