• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Characterization of the interactions on anion-exchange modified silica sorbents

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3040117_sip1_m.pdf
    Size:
    2.481Mb
    Format:
    PDF
    Download
    Author
    Boland, Diane Marie
    Issue Date
    2001
    Keywords
    Chemistry, Analytical.
    Advisor
    Burke, Michael F.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Understanding the interactions at the modified silica interface used as a stationary phase in various chromatographic techniques is of great importance in elucidating the mechanism of solute retention. Investigating the factors that control the selectivity and efficiency for retention of a solute is also important as it can lead to the manipulation of the interfacial properties to give improved separations. In this research, solid phase extraction was used to obtain information about silica based anion-exchange stationary phases and their interaction with acidic analytes. Solid Phase Extraction (SPE) experiments using strong anion-exchange sorbents containing a fixed positive charge illustrated the importance of the counter-ion present at the surface. From these studies, it was determined that different counter-anions have different affinities for the ion-exchange site. Lower selectivity counter-anions (i.e. acetate) are more easily displaced from the sorbent by acidic analytes than a higher selectivity counter-anion (i.e. citrate). The general trend amongst counter-ions beginning with the counter-ion with the greatest affinity for the ion-exchange site is shown here: citrate > maleate > sulfate > formate > phosphate > chloride > hydroxide > nitrate > propionate > acetate. Overall, selectivity was not only determined to be a function of ionic interactions, but was also found to be a function of the extent of hydration of both the counter-ion and the surface. Weak anion-exchange sorbents consisting of primary and secondary amines were also investigated. In order for weak sites to contain ion-exchange sites, the pH needs to be selected so that the surface is ionized. Due to the pH dependence of weak anion exchangers, studies were undertaken to determine the effect that pH has on the extraction of acidic analytes. It was determined that the pH at the surface is not necessarily that of the bulk solution. It was also concluded that ionic, hydrophobic, strong dipole, and charge-induced dipole interactions contribute to the extraction of acidic compounds. SPE was also applied to the isolation and purification of acidic compounds. With a better understanding of the surface/solvent environment, a generic approach was developed for the extraction of toxicologically relevant compounds from biological matrices. By understanding the influence of pH, counter-anion, and degree of hydrophobic character of both analyte and surface, an enhancement in extraction efficiency and selectivity was achieved.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.