• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Assimilation of satellite-derived cloud cover into the Regional Atmospheric Model System (RAMS) and its impacts on modeled surface fields

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3002537_sip1_m.pdf
    Size:
    2.925Mb
    Format:
    PDF
    Download
    Author
    Yucel, Ismail
    Issue Date
    2001
    Keywords
    Hydrology.
    Physics, Atmospheric Science.
    Advisor
    Shuttleworth, W. James
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The goal of this study is to provide an improved, high resolution, regional diagnosis of three important surface variables on the land surface energy and water balance, namely the downward short-wave and downward long-wave surface radiation fluxes, and precipitation. Cloud cover is a key parameter linking and controlling these three terms. An automatic procedure was developed to derive high-resolution (4 km x 4 km) fields of fractional cloud cover from visible band, (GOES series) geostationary satellite data using a novel tracking procedure to determine the clear-sky composite image. In our initial data assimilation studies, the surface short-wave radiation fluxes calculated by RAMS were simply replaced by the equivalent estimated values obtained by applying this high-resolution satellite-derived cloud cover in the UMD GEWEX/SRB model. However, this initial study revealed problems associated with inconsistencies between the revised solar radiation fields and the RAMS-calculated incoming long-wave radiation and precipitation fields, because modeled cloud cover remained unchanged and, consequently, these other surface fields retained their low, clear-sky values. It was recognized that the UMD GEWEX/SRB model provides an important relationship between cloud albedo, cloud optical depth and cloud water/ice. Thus, exploration was made of feasibility of directly assimilating vertically integrated cloud water/ice fields to update modeled cloud cover. This approach will not only enhance the realism of radiation scheme in RAMS, but it may also dramatically increase the model's capability to predict the location of precipitation, thus enhancing the ability of such mesoscale modeling systems to make accurate short-term forecasts of precipitation. This, in turn, would benefit flood forecasting as an associate hydrologic response. In the method adopted, the assimilated image takes the horizontal distribution of cloud from the satellite image but it retains a vertical distribution which is the area-average simulated by RAMS across the modeled domain in the time step immediately prior to cloud assimilation. Cloud assimilation is made every minute, with linear interpolation applied to derive cloud images for each minute between two GOES samples. Comparisons were made between modeled and observed data taken from the AZMET weather station network for model runs with and without cloud assimilation to demonstrate the improvement in RAMS' ability to describe surface radiation and precipitation fields. Cloud assimilation was found to substantially improve the RAMS model's ability to capture both the temporal and spatial variations in surface fields associated with observed cloud cover. The sensitivity of these comparisons to model initiation was explored by making five ensemble runs starting from different initiation. In general, RAMS with cloud assimilation technique is not sensitive to realistic perturbation of initial conditions.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Hydrology and Water Resources
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.