• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    Statistics

    Display statistics

    Late Quaternary paleohydrology and surficial processes of the Atacama Desert, Chile: Evidence from wetland deposits and stable isotopes of soil salts

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3040122_sip1_m.pdf
    Size:
    4.784Mb
    Format:
    PDF
    Download
    Author
    Rech, Jason Arnold
    Issue Date
    2001
    Keywords
    Geology.
    Advisor
    Quade, Jay
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The origin of pedogenic salts in the Atacama Desert has long been debated. Possible salt sources include in situ weathering at the soil site, local sources such as aerosols from the adjacent Pacific Ocean or salt-encrusted playas, and extra-local atmospheric dust. To identify the origin of Ca and S in Atacama soil salts, we determined δ ³⁴S and ⁸⁷Sr/⁸⁶Sr values of soil gypsum/anhydrite and ⁸⁷Sr/⁸⁶Sr values of calcium carbonate along three east-west trending transects in the Atacama. Our results demonstrate the strong influence of marine aerosols on soil gypsum/anhydrite development in areas where marine fog penetrates inland. In areas where the Coastal Cordillera is >1200 m, however, coastal fog cannot penetrate inland and the contribution of marine aerosols to soils is greatly reduced. Salts in inland soils appear to originate from eolian redistribution of playa salts that are precipitated from evaporated ground water. This ground water has acquired its dissolved solids from water-rock interactions (both thermal and low-temperature) along flowpaths from recharge areas in the Andes. The spatial distribution of high-grade nitrate deposits appears to correspond with areas that receive the lowest fluxes of local dust, supporting arguments for an atmospheric source of nitrate. Ground water in the Atacama is derived from precipitation in the High Andes (>3500 m) that infiltrates soils and then flows down the Pacific slope of the Andes to feed aquifers within the hyperarid core of the Atacama Desert. At many locations, ground water surfaces and creates springs, marshes, and wetlands. In order to track late Quaternary fluctuations in ground-water recharge, paleowetland deposits at eight separate locations (between 18°-26°S) were mapped and dated. Over 200 AMS ¹⁴C dates on a variety of materials provide firm age control on these deposits. Replication of time-stratigraphic units from an assortment of hydrologic settings and varying distances from recharge areas in the Andes show that ground-water systems are responding to regional changes in climate and that response times are probably short (<1000 years). Results suggest that the wettest period represented by deposits was during the late Glacial/early Holocene (∼16-9.5 ka B.P.) and that a moderately wet period occurred during the mid-Holocene (8--3 ka B.P.). Major drops in Atacama water tables, due to regional drought, occurred between 9.5-8 and ∼3 ka B.P. The late Holocene was characterized by generally lower water tables than during the mid-Holocene and subject to more frequent water table drops. Fluctuations in tropical Pacific Sea Surface Temperatures, the Walker Circulation, and ENSO variability is thought to be the major control on precipitation over this region during the late Quaternary.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Geosciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.