• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Electrokinetic transport and fluid motion in microanalytical electrolyte systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3040130_sip1_m.pdf
    Size:
    4.667Mb
    Format:
    PDF
    Download
    Author
    Sounart, Thomas L.
    Issue Date
    2001
    Keywords
    Chemistry, Analytical.
    Engineering, Chemical.
    Advisor
    Baygents, James C.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Electrically-driven separation schemes, such as zone electrophoresis (ZE), isotachophoresis (ITP) and isoelectric focusing (IEF), are used profoundly to fractionate mixtures of charged compounds for preparative and particularly analytical applications. Inherent to the separation process is the development of local variations in the electrical conductivity, pH, electric field, etc. One-dimensional, quantitative descriptions of the spatio-temporal evolution of these variations, and their role in the separation process, have been developed over the past two decades. These descriptions lend significant insight into the electromigrational behavior of analytes and buffer components. Nevertheless, because they are one-dimensional, such descriptions omit important effects of electrokinetic fluid motion. The fluid motion arises naturally in the context of the separation scheme, and affects the evolving spatial gradients associated with the separation process. One-dimensional simulations have also been plagued by numerical limitations associated with advection-dominant transport in regions of sharp concentration gradients. In this dissertation, the numerical difficulties are resolved, and a general two-dimensional model of electrokinetic separations is presented. Because the balance laws account for coupling of the velocity field to the ion transport, a variety of processes important to both microfluidic manipulations and analytical separations can be considered. High-ionic strength electroosmotic pumping and field-amplified sample stacking are examined in detail. It is demonstrated that unsteady fluid eddies disperse the gradients in the field variables, and this limits the efficacy of microanalysis processes. Scaling arguments suggest that, at least for simple geometries, approximate solutions to the general model are possible. Semi-analytic approximations are constructed for the fluid velocity v and electric field E, and the parameter space over which they apply is defined. These approximations reduce simulation times by about two thirds, and provide general information on the dominant physics in microanalysis processes. The scale analysis and simulation results demonstrate that although cross-sectional conductivity gradients meet or exceed those in the axial direction, the electric field is essentially unidirectional. Also, at sufficiently high electric field strengths (ca. several hundred V/cm), nonlinear electrohydrodynamic stresses begin to influence the fluid motion. Finally, if the electrical stresses are negligible, the semi-analytic solutions for v and E permit 1-D macrotransport representations of the solute transport. Effective 1-D simulations yield cross-sectionally averaged values for the field variables in orders of magnitude less simulation time than 2-D simulations.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemical and Environmental Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.