• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Cloning, overexpression and characterization of iron regulatory proteins from insects

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3040137_sip1_m.pdf
    Size:
    2.800Mb
    Format:
    PDF
    Download
    Author
    Zhang, Dianzheng
    Issue Date
    2001
    Keywords
    Biology, Molecular.
    Biology, Entomology.
    Biology, Animal Physiology.
    Advisor
    Winzerling, Joy J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Iron is essential for life and iron homeostasis is important for all species. Compared to the understanding of iron metabolisms in vertebrates, we know much less about insect intracellular iron homeostasis. The iron regulatory proteins (IRPs) play central roles in this process by interaction with iron responsive elements (IREs). Here, I report the cloning, sequencing, overexpression, purification and characterization of IRP1s from two insect species, Manduca sexta and Aedes aegypti. Electrophoretic mobility shift assays demonstrated that both IRP1s specifically bind IREs s not only from the same species, but also from human ferritin IRE. Another ferritin subunit also was cloned from Manduca sexta and an IRE was identified in the 5'-untranslated region of the mRNA, and the IRE reacted with Manduca IRP1 specifically. Transcription/translation assays demonstrated that both IRP1s repress ferritin synthesis in vitro, and the repression is IRE dependent. Iron administration to Manduca sexta increased hemolymph ferritin levels and decreased fat body IRP1/IRE binding activities without affecting either the IRP1 mRNA or protein levels. These data indicates that translational control of ferritin synthesis by IRP1/IRE interaction could occur in insects in a manner similar to that of mammals. To our knowledge this is the first report of the control of insect ferritin synthesis by IRP1/IRE interaction. The different responses to reducing agent of Manduca sexta and mammalian IRP1s could provide a potential future strategy for designing pesticides in insect control.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Nutritional Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.