• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Genetic analysis of endocytosis at the Drosophila synapse

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3050301_sip1_m.pdf
    Size:
    2.044Mb
    Format:
    PDF
    Download
    Author
    Narayanan, Radhakrishnan
    Issue Date
    2002
    Keywords
    Biology, Molecular.
    Biology, Neuroscience.
    Biology, Cell.
    Advisor
    Ramaswami, Mani
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Endocytosis plays an essential role in maintaining a pool of synaptic vesicles for sustained neurotransmitter release. Synaptic vesicles are internalized and fuse with endosomes, and are subsequently reassembled to be ready for another round of exocytosis. Here I describe in two distinct studies the function of endosomes at synapses and regulation of dynamin, a protein essential for endocytosis, using the Drosophila synapse as a model. To study the function of endosomes at synapses I analyzed the localization and function of two Drosophila endosomal proteins, Hook and Deep orange (Dor), at the larval neuromuscular junction. I present here the first genetic evidence of a role for endocytic trafficking in plasticity of the synapse. I also found that mutations in hook and dor affect the number of varicosities at the nerve terminal without affecting synaptic vesicle recycling, indicating that Hook and Dor proteins play a role in later stages of endocytosis at the synapse. Dynamin is a GTPase that is essential for internalization of synaptic vesicles from the plasma membrane. Flies carrying shi ts mutations have a conditional defect in dynamin function. Molecules that regulate GTP loading (guanine-nucleotide exchange factors-GEFs) and GTPase activity (GTPase activating proteins-GAPs) of dynamin are unknown. Here I describe the identification of such molecules/domains by analyses of enhancer and suppressor mutations identified in previously conducted genetic screens. I show here that the enzymatic activity of Nucleoside diphosphate kinase (NDP Kinase), a source of GTP encoded by the Drosophila abnormal wing discs (awd) or human nm23 tumor suppressor genes, is essential for dynamin function at synapses. Dynamin is also regulated by an intramolecular GTPase effector domain (GED) and I have identified separate mutations in shi, which map to the GED, that suppress endocytic defects in shits2. Overall, these data indicate a model in which the stability of dynamin: GTP is opposingly regulated by an unusual GEF activity of NDP kinase and a GAP activity in dynamin; in addition these findings indicate the possibility of an intriguing therapy for nm23 tumor progression.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Molecular and Cellular Biology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.