• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Molecular characterizations of type IIb sodium dependent phosphate cotransporter in mouse intestine

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3050329_sip1_m.pdf
    Size:
    2.980Mb
    Format:
    PDF
    Download
    Author
    Arima, Kayo
    Issue Date
    2002
    Keywords
    Biology, Molecular.
    Biology, Genetics.
    Biology, Animal Physiology.
    Health Sciences, Nutrition.
    Advisor
    Jones, John J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Inorganic phosphate (Pi) homeostasis is mainly regulated by absorption of dietary Pi in the small intestine and reabsorption of filtered Pi in the kidney. I have characterized the 5 '-flanking region and overall gene structure of the murine type IIb sodium-phosphate cotransporter (Na/Pi-IIb), a major apical Pi transporter. The Na/Pi-IIb cotransporter gene spans more than 18 kb and consists of 12 introns and 13 exons. Three promoter/reporter gene constructs, -159/+73, -429/+73 and -954/+73, showed significant luciferase activity when transfected into in rat intestinal epithelial (RIE-1) cells. Pi requirement during development is much higher than in adult life. In the next set of experiments, I sought to characterize expression of the intestinal Na/Pi-IIb cotransporter during mouse ontogeny and to assess the effects of methylprednisolone (MP) treatment. In control mice, Na/Pi uptake by intestinal brush-border membrane vesicles was highest at 14-days-of-age, lower at 21 days and further reduced at 8 weeks and 8--9 months of age. Na/Pi-IIb mRNA and immunoreactive protein levels in 14-d animals were markedly higher than in older groups. MP treatment significantly decreased Na/Pi uptake, and Na/P i-IIb mRNA and protein expression in 14-d mice. Additionally, the size of the protein was smaller in 14-d mice. Deglycosylation of protein from 14-d and 8-wk old animals with PNGase F reduced the molecular weight to the predicted size. I conclude that intestinal Na/Pi uptake and Na/Pi-IIb expression are highest at 14-d and decrease with age. Furthermore, MP treatment reduced intestinal Na/Pi uptake ∼3-fold in 14-d mice and this reduction correlates with reduced Na/Pi-IIb mRNA and protein expression. I also demonstrate that Na/Pi-IIb is an N-linked glycoprotein and that glycosylation is age-dependent. In conclusion, the mouse intestinal Na/Pi-IIb cotransporter is developmentally regulated at mRNA and protein levels. MP-treatment also reduces mRNA and protein expression during development. The Na/Pi-IIb gene promoter constructs identified in the first study will be a useful tool to investigate the possible transcriptional regulations. Furthermore, studying post-translational regulation including glycosylation will reveal developmental effects on Na/Pi-IIb cotransporter protein. These studies will help to decipher molecular mechanisms of Pi absorption in mammalian small intestine.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Nutritional Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.