• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    New materials for multilayer mirrors in the extreme ultraviolet region

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3050338_sip1_m.pdf
    Size:
    4.099Mb
    Format:
    PDF
    Download
    Author
    Hiller, Uli
    Issue Date
    2002
    Keywords
    Physics, Condensed Matter.
    Physics, Optics.
    Advisor
    Falco, Charles M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Near normal incidence multilayer mirrors are optical elements that are suitable for the extreme ultraviolet wavelength (EUV) region where applications include lithography, astronomy, and microscopy. Multilayer mirrors are made from alternating layers of two materials, called the "absorber" and "spacer," with the thickness of the layers designed such that reflections from each interface add in phase resulting in a large overall reflectivity. The criteria I used for the selection of six new material pairs included achieving the maximum theoretical reflectivity while taking into consideration the possible structural properties of the interfaces based on binary phase diagrams. The pairs were: C-Cu, B₄C-Ag, B₄C-Sn, Y-Pd, Be-Mo, and Be-Y. My experimental results on sputtered C-Cu and B₄C-Ag multilayers showed that they are not suitable as mirror materials due to the formation of discontinuous layers of Cu and Ag for small bilayer periods Λ. I also found it not possible to sputter tin films with small enough interfacial roughness values that would result in useful B₄C-Sn mirrors. My analysis of Y-Pd multilayers showed asymmetric alloying at the interfaces with an approximately 40 Å thick alloy region at the Y on Pd interface which would result in negligible mirror reflectivity. I used one of our molecular beam epitaxy (MBE) machines to attempt to grow single crystal Be-Mo mirrors. Although my attempts were unsuccessful to date, this combination cannot be excluded due to various problems with the MBE sample manipulator during the growth study. Finally I used the same MBE machine to grow Be-Y mirrors with up to 40 bilayers. These multilayers had extremely smooth interfaces (σ = 3.5-4.5 A) with a predicted mirror reflectivity larger than 65%. I found the stability of the Be-Y interfaces to be excellent under atmospheric long term storage. An X-ray photoelectron spectroscopy (XPS) annealing study I conducted also showed stable interfaces for temperatures of up to 200°C. Be-Y mirrors should be suitable for a variety of applications including EUV-lithography.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Physics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.