• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Titan, Triton, Pluto, and Kuiper belt objects: A study of past and present atmospheres with grey and nongrey models

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3010190_sip1_m.pdf
    Size:
    3.474Mb
    Format:
    PDF
    Download
    Author
    Rao, Anupama M. N.
    Issue Date
    2001
    Keywords
    Mathematics.
    Physics, Astronomy and Astrophysics.
    Physics, Atmospheric Science.
    Advisor
    Lunine, Jonathan I.
    Pinto, Philip A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This work is divided into two parts: a grey model for past Triton, Pluto, and Kuiper belt objects, and a nongrey model for current Titan's troposphere. Steady-state, planar models of early atmospheres for Triton, Pluto, and Kuiper belt objects are computed using a grey approach that tracks the transfer/distribution of heat via radiative transport. These objects are treated here together because they resemble one another in size, surface chemical composition, and exist in the same cold portion of the outer solar system. Beginning with present-day volatiles observed on the surfaces of Triton and Pluto (methane and molecular nitrogen), a trace of molecular hydrogen (present in most primordial atmospheres) is added. It is assumed that as the object is heated by solar, tidal, accretional, or radiogenic methods (this varies between the objects treated here) these chemical species then evaporate from the surface to create an atmosphere. Binary collisions among the molecules account for the sources of opacity, and absorption coefficients are provided by [21]. The grey atmosphere calculations require a mean opacity, and its results are sensitive to the type of mean opacity used. Thus a variety of methods (Planck, Rosseland, and Chandrasekhar mean opacities) are used to accommodate this dependence and the variations in optical depth. Surface temperatures are then calculated as a function of the heating rate, molecular hydrogen abundance, and mean opacity type. As a result of these modelling experiments, tidal heating is found to be crucial to the formation of a thick atmosphere on Triton, and albedo and gravitational acceleration strongly affect the formation of atmospheres on less massive objects such as Pluto and Kuiper belt objects. A nongrey, steady-state, planar model of Titan's current troposphere is developed to study the effect of varying methane mass fraction. Methods from stellar atmosphere modelling are used to solve the equation of transfer as a two-point boundary problem. To additionally satisfy radiative, hydrostatic, and local thermodynamic equilibrium, an iterative correction procedure is utilized since the correct temperature and density profiles as a function of altitude are not known a priori. The volatile composition is taken from observation: molecular nitrogen, methane, and molecular hydrogen. Again, binary collisions among the molecules account for the sources of opacity, and absorption coefficients are provided by [21]. The heating source for Titan is solar radiation absorbed and reradiated by the planet's surface in the infrared region of the spectrum, with a small amount of heat emanating from the stratosphere. The chemical species evaporate from the surface to create an atmosphere. Models of Titan's troposphere are calculated using different amounts of methane (within observational constraints) since the presence of methane is evolving in Titan's atmosphere due to photolytic processes. From model results it is shown that by solving the radiative transfer equation, subject to radiative, hydrostatic, and local thermodynamic equilibrium constraints, a model of Titan's troposphere with a maximum deviation of 8% from data [85] [170] can be obtained. The preliminary model of past Titan's troposphere is consistent with other analytic results [89].
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Applied Mathematics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.