• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Replication and recombination of the Red clover necrotic mosaic virus

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3060946_sip1_m.pdf
    Size:
    4.900Mb
    Format:
    PDF
    Download
    Author
    Weng, Ziming
    Issue Date
    2002
    Keywords
    Agriculture, Plant Pathology.
    Advisor
    Xiong, Zhongguo
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In this study, Red clover necrotic mosaic virus (RCNMV) was used to better understand the functions of replication proteins and to identify the terminal promoter element involved in viral replication. RCNMV genome contains two positive-sense, single-stranded RNAs. RNA-1 encodes two proteins essential for viral replication: p27 and p88. p88 is a fusion protein containing p27 at its N terminus and RNA dependent RNA polymerase motifs at its C-terminal domain. The function of p27 is not known. In this work, studies of RNA-1 chimerical clones between a highly infectious clone and a poorly infectious clone and subsequent mutagenesis demonstrated that the N-terminal 14 amino acids of p27 and p88 were required for efficient RNA replication. Sequence analysis indicated that it is possibly involved in membrane interaction. Another important aspect of viral replication is template recognition by the replicase at the 3' promoter. The 3' -29 nucleotides of both RCNMV RNA-1 and RNA-2 can be predicted to form an identical stem-loop structure (SLS). Mutational analysis of the SLS indicated that both the structure and the loop sequence were required for viral replication. Within the 5-nt loop region, three discontinuous nucleotides were identified as critical nucleotides for RNA-replicase interaction. The functional groups in these key nucleotides involved in replicase recognition are predicted. The 3' promoter element of RCNMV not only affects viral RNA replication but also influences transgenic recombination. RCNMV RNA-2 encodes a movement protein (MP) that is required for viral cell-to-cell movement and systemic infection. Transgenic Nicotiana benthamiana plants expressing different versions of MP mRNA neither resisted RCNMV nor complemented RNA-1 infection. However, systemic infection was observed in transgenic lines expressing 5' truncated MP mRNA when only RNA-1 was inoculated. Further analysis showed that the infection was resulted from nonhomologous RNA recombination events between infecting RNA-1 and MP transgene mRNA. A replicase-mediated template switch model of the transgenic recombination was proposed. The presence of the 3' promoter element in the transgene mRNA thus was a major factor determining transgenic recombination frequencies. As predicted from the model, transgene mRNA lacking the 3' promoter element would not be a good donor RNA for transgenic recombination. Consequently, no transgenic recombination was detected in transgenic plants expressing the 3' truncated MP mRNA upon inoculation with RCNMV RNA-1.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Plant Pathology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.