• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Modulation of synaptic plasticity by theta rhythm and structure-function relationships in a single ion channel

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3060970_sip1_m.pdf
    Size:
    4.177Mb
    Format:
    PDF
    Download
    Author
    Orr, Galya
    Issue Date
    2002
    Keywords
    Biology, Neuroscience.
    Advisor
    Barnes, Carol A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A few studies support the idea that the theta rhythm modulates synaptic plasticity by demonstrating that the phase of the theta cycle at which the induction stimuli are delivered determines the nature of the resulting synaptic plasticity. These studies were conducted in urethane-anesthetized animals and in vitro slice preparations where the theta rhythm is artificially generated. Our goal was to find whether and how natural theta activity affects synaptic plasticity in the hippocampus of adult and old freely behaving animals. In both adult and aged, memory-impaired rats, LTP lasting at least 48 h was induced when stimuli were delivered at theta peak. No change in synaptic strength was observed when stimuli were delivered at theta trough. These observations indicate that the naturally occurring theta rhythm modulates synaptic plasticity, and suggest a mechanism by which the phase of firing could contain meaningful information. The degree of LTP, however, was significantly smaller in the old animals. To better understand the conformational changes and the dynamic interactions that govern ion-channel kinetics we developed a new approach using simultaneous single-channel patch-clamp recording and single-molecule fluorescence microscopy. Gramicidin monomers were tagged with a fluorescence dye and single-channel current was recorded from gramicidin channels in the bilayer that was formed at the tip of a patch pipette. Co-localization and fluorescence resonance energy transfer (FRET) within a single gramicidin dimer were probed. The new technique made it possible to directly capture the conformational dynamics between the two gramicidin monomers by observing the changes in the distance between the attached dye molecules. The molecular interactions of the NMDA receptor with its ligands determine the dynamic properties of activation and desensitization that in turn shape NMDA receptor mediated currents. We have monitored the occurrence and intensity changes of FRET between two fluorescence-labeled agonists at the glutamate binding site of the receptor, simultaneously with single channel current recording. These observations can be translated to dissociation/association rates and aid in our understanding of the mechanisms that underlie the transitions of the receptor between different kinetic states.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Neuroscience
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.