• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Stochastic daily thunderstorm generation in southeast Arizona

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3060995_sip1_m.pdf
    Size:
    2.743Mb
    Format:
    PDF
    Download
    Author
    Hsieh, Huey-Hong
    Issue Date
    2002
    Keywords
    Engineering, Civil.
    Engineering, Environmental.
    Advisor
    Stone, Jeffry J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Thunderstorm rainfall in semi-arid areas has very high spatial and temporal variability. Knowledge of the spatial characteristics of thunderstorm rainfall is important for the increasing demands of distributed hydrological modeling. Rainfall data from the semiarid USDA-ARS Walnut Gulch Experimental Watershed (WGEW) were used to investigate the spatial characteristics of thunderstorm rainfall in southeast Arizona and to develop a daily thunderstorm rainfall generator. WGEW has a very dense rain-gage network (1 gage per 2 km²) and very comprehensive historical records (over 40 years). These data were used to identify the following physical characteristics of thunderstorm rainfall: the transition probabilities, thunderstorm cell size, orientation, maximum rainfall depth within a storm cell and storm center location. The following statistical characteristics were identified through an analysis of the WGEW data: the storm center locations on WGEW have a Poisson distribution, the maximum depth within a storm cell has a lognormal distribution, the shape of a storm cell is elliptical with an average major axis length to the minor axis length ratio of 1.55 and the orientation of a storm cell is primarily NW or NE. The storm coverage and the maximum rainfall depth within a storm cell have a linear relationship after a logarithmic transformation. Storm occurrences have higher frequencies during the last two weeks of July and the first two weeks of August than other wet periods (July ∼ September). The stochastic daily summer rainfall generator being developed based on the statistical characteristics above was tested by comparing the simulation results with long-term historical records of representative gages on WGEW.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Agricultural & Biosystems Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.