• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Constraints on the surface composition of Trojan asteroidsfrom near infrared (0.8-4.0 μm) spectroscopy and spectral modeling

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3073216_sip1_m.pdf
    Size:
    5.119Mb
    Format:
    PDF
    Download
    Author
    Emery, Joshua P.
    Issue Date
    2002
    Keywords
    Physics, Astronomy and Astrophysics.
    Advisor
    Brown, Robert H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The present surface composition of primitive objects provides clues to understanding the conditions under which the solar system formed. Characterization of the inner solar nebula progresses rapidly due to remote studies of asteroid and planetary surfaces as well as laboratory analyses of meteorites and lunar samples. Because of their atypical orbital position at 5.2 AU, the Trojan asteroids hold the potential to help resolve several problems in planetary science, including conditions in the early solar nebula. The study presented herein was undertaken in order to uncover the nature of these poorly understood asteroids. Near-infrared reflectance spectra are presented over the wavelength range 0.8-4.0 μm. These observations nearly double the number of published 0.8-2.5 μm spectra of Trojans and provide the first systematic study of the L-band (2.8-4.0 μm) region for these distant asteroids. The spectra do not contain any definitive absorption features characteristic of surface composition (e.g. H₂O, organics, silicates) as seen on main-belt asteroids and several Centaur and Kuiper Belt objects. These data are combined with previously published data to construct spectra covering the visible and near-IR (0.3-4.0 μm) for as many objects as possible. The composite spectra are analyzed quantitatively using the formulation for scattering in a particulate medium developed by Hapke. Under this rigorous examination, it is found to be unlikely that the red spectral slope is a result of organics on the surfaces, due mainly to the lack of absorptions in the L-band. These surfaces are compatible with mixtures of anhydrous silicates and carbonaceous material. Upper limits are placed on the amount of water ice and hydrated silicates present on the surfaces. Similar analysis is performed for several other groups of dark solar system objects. Comparison of these results with those for Trojan asteroids indicates that it is likely that the Trojans formed in the solar nebula near 5 AU. If this is true, then the determination that the red slope is probably not due to organic material does not fit with the generally accepted view of trends of composition with heliocentric distance. Implications and possible alternative explanations are discussed.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Planetary Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.