• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Insights into the biochemical life cycle of the vitamin D receptor: Protein and DNA interactions that transduce the signal for gene expression

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3073217_sip1_m.pdf
    Size:
    4.475Mb
    Format:
    PDF
    Download
    Author
    Encinas, Carlos
    Issue Date
    2002
    Keywords
    Biology, Molecular.
    Advisor
    Haussler, Mark R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The biological actions of 1α,25-dihydroxyvitamin D₃ (1,25(OH)₂D₃) are mediated by the nuclear vitamin D receptor (VDR), which functions as a ligand-dependent transcriptional regulator. We have developed a six-stage molecular model summarizing the VDR transcriptional activation-life cycle, and tested this model using a variety of experimental approaches, including pull-down assays with GST-fusion proteins, as well as assays of the functional activity of VDR and its putative coactivators in transiently transfected mammalian cells. The six stages of the VDR life cycle are: (1) unoccupied VDR binds to a transcriptional corepressor which serves as a chaperone, maintaining the main protein players in close contact in an inactive complex; (2) VDR becomes occupied by 1,25(OH)₂D₃ ligand, enabling the receptor to heterodimerize strongly with a retinoid X receptor (RXR), leading to high affinity DNA binding and recruitment of coactivators with histone acetyl transferase (HAT) activity; (3) coactivator HAT activity promotes chromatin remodeling, rendering the gene promoter free to interact with the transcription preinitiation complex (PIC); (4) dissociation of VDR from the HAT coactivators, followed by association of a second set of coactivators that promote formation of the preinitiation complex (PIC); (5) transcriptional recycling of the liganded receptor and heteropartner to initiate additional rounds of transcription; and (6) ubiquitination and eventual degradation of VDR. Phosphorylation of VDR may influence all six stages. A testable conclusion from our model is that the role of the 1,25(OH)₂D₃ hormonal ligand would be primarily in the transition from stage 1 to stage 2, but the continued presence of 1,25(OH)₂D₃ appears to be necessary also for the progression from stages 3 through 6 to VDR degradation, or alternatively for recycling via stage 5. This characterization of the macromolecular cofactors that transduce the signal of the 1,25(OH)₂D₃ hormone to promote gene expression in vitamin D target tissues should add to our understanding of endocrine control of bone mineral remodeling and of epithelial cell differentiation. The present work also identifies new protein players that are candidates for mutation or dysregulation in the pathophysiology of vitamin D resistant bone disorders (osteoporosis), and in hyperproliferative diseases of vitamin D regulated epithelial tissues such as skin.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Molecular and Cellular Biology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.