• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Molecular hydrogen and its ions in dark interstellar clouds and star forming regions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3073241_sip1_m.pdf
    Size:
    6.647Mb
    Format:
    PDF
    Download
    Author
    Kulesa, Craig A.
    Issue Date
    2002
    Keywords
    Physics, Astronomy and Astrophysics.
    Physics, Molecular.
    Advisor
    Walker, Christopher K.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Fundamental observations of molecular hydrogen (H₂) in dark clouds, star forming regions, and radiation-dominated environments are presented, modeled, and interpreted. Through a weak infrared absorption line spectrum, the abundance of cold H₂ in dark molecular clouds and star forming regions is measured directly and compared with the abundance of its most commonly cited surrogate, CO. The derived abundance of CO is between 1.5 and 2.5 x 10⁻⁴ for the sample. The CO molecule thus represents about ⅓ of the total carbon budget in dense clouds. Also detected via infrared line absorption is the pivotal molecular ion H⁺₃ , yielding a direct measure of the cosmic ray ionization rate of H₂ in dark molecular clouds (between 1 and 5 x 10⁻¹⁷ s⁻¹), a process that instigates the complex ion-neutral chemical pathways that form many of the 120+ known molecular species deep inside interstellar clouds. These timely tests of theory are applied to the detailed submillimeter-wave study of the ρ Ophiuchi star forming cloud and photodissociation front, allowing partial disentanglement of the complicated physical and chemical structure of a star forming cloud. Yet H₂ and H⁺₃ continue to surprise and delight us with more mysteries. The formation, excitation and survival of molecules in unusual & hostile environments is highlighted by the discoveries of H⁺₃ in circumstellar disks of early-type stars, and of fluorescing H₂ in two harshly-irradiated filaments of the Crab Nebula. The role of H⁺₃ as a possible tracer of planet formation, and the evolution of H₂ in the interstellar medium is discussed. The study of H₂ in hostile environments is extended to the ensemble properties of extragalactic star forming regions, and applied to the Arp 299 merger system as a unique probe of the feedback of newly-formed hot stars, their fossil remains, and the molecular material which formed them.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Astronomy
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.