• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Myofibrillogenesis and the avian precardiac explant system

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3073307_sip1_m.pdf
    Size:
    2.301Mb
    Format:
    PDF
    Download
    Author
    Rudy, Diane E.
    Issue Date
    2002
    Keywords
    Biology, Cell.
    Biology, Animal Physiology.
    Advisor
    Gregorio, Carol C.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Cardiac muscle contraction is critically dependent upon the extensive level of organization of cytoskeletal proteins found in the repeating sarcomeric units of individual myofibrils. Within these units, thick and thin filament systems are assembled and aligned to the precision of single molecules. For years, scientists have been challenged to uncover the mechanisms by which this is accomplished. To date, however, these mechanisms remain relatively unclear due in large part to the lack of suitable in vitro models that faithfully recapitulate the events of myofibril assembly observed in vivo. Several years ago, an avian embryo explant system was developed to investigate other aspects of heart development. Within this system, premyocardial cells differentiate in culture and commence beating in a temporal pattern that corresponds with cardiomyocyte differentiation in vivo. We hypothesized that premyocardial explants could also serve as a particularly advantageous system for investigating myofibrillogenesis. To test this, in Chapter 2, we characterized the temporal/spatial relationships between sarcomeric components during assembly using immunofluorescence microscopy. Our results indicated that events of myofibril assembly in explants mirrored those observed in vivo. Furthermore, these cells are accessible to experimental manipulation (Chapter 5). In Chapter 3, we utilized the precardiac explant system to investigate events of actin (thin) filament assembly during development. Immunofluorescence and ultrastructural analyses revealed that thin filament and sarcomere lengths increase gradually as cardiomyocytes mature. FRAP analyses also demonstrated that the thin filament pointed-end capping activity of E-Tmod is more dynamic during early assembly stages, a property that could dramatically affect the rate of actin monomer exchange/addition during myofibrillogenesis. Research continues in an attempt to identify potential mechanisms regulating E-Tmod dynamics. Finally, in Chapter 4, we investigated the function of a unique elastic region of I-band titin called titin-N2B. In this study, GFP-tagged constructs of titin-N2B were overexpressed in cardiomyocytes in an attempt to disrupt the potential interaction of endogenous N2B with an intracellular ligand. Our results suggested that the NH2-terminal domains of N2B are directly or indirectly critical for stabilizing thin filament structure; thus, N2B emerges as a unique region of titin that is critical for the maintenance of cardiac myofibrils.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Cell Biology and Anatomy
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.