• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Searching and mining the Web for personalized and specialized information

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3089915_sip1_m.pdf
    Size:
    4.701Mb
    Format:
    PDF
    Download
    Author
    Chau, Michael C.
    Issue Date
    2003
    Keywords
    Business Administration, Management.
    Information Science.
    Advisor
    Chen, Hsinchun
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    With the rapid growth of the Web, users are often faced with the problem of information overload and find it difficult to search for relevant and useful information on the Web. Besides general-purpose search engines, there exist some alternative approaches that can help users perform searches on the Web more effectively and efficiently. Personalized search agents and specialized search engines are two such approaches. The goal of this dissertation is to study how machine learning and artificial intelligence techniques can be used to improve these approaches. A system development research process was adopted as the methodology in this dissertation. In the first part of the dissertation, five different personalized search agents, namely CI Spider, Meta Spider, Cancer Spider, Nano Spider, and Collaborative Spider, were developed. These spiders combine Web searching with various techniques such as noun phrasing, text clustering, and multi-agent technologies to help satisfy users' information needs in different domains and different contexts. Individual experiments were designed and conducted to evaluate the proposed approach and the experimental results showed that the prototype systems performed better than or comparable to traditional search methods. The second part of the dissertation aims to investigate how artificial intelligence techniques can be used to facilitate the development of specialized search engines. A Hopfield Net spider was proposed to locate from the Web URLs that are relevant to a given domain. A feature-based machine-learning text classifier also was proposed to perform filtering on Web pages. A prototype system was built for each approach. Both systems were evaluated and the results demonstrated that they both outperformed traditional approaches. This dissertation has two main contributions. Firstly, it demonstrated how machine learning and artificial intelligence techniques can be used to improve and enhance the development of personalized search agents and specialized search engines. Secondly, it provided a set of tools that can facilitate users in their Web searching and Web mining activities in various contexts.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Business Administration
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.