• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Laser chemical etching of waveguides and quasi-optical devices

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3089925_sip1_m.pdf
    Size:
    3.676Mb
    Format:
    PDF
    Download
    Author
    Drouet d'Aubigny, Christian
    Issue Date
    2003
    Keywords
    Physics, Astronomy and Astrophysics.
    Physics, Optics.
    Advisor
    Walker, Christopher K.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The terahertz (THz) frequency domain, located at the frontier of radio and light, is the last unexplored region of the electromagnetic spectrum. As technology becomes available, THz systems are finding applications to fields ranging all the way from astronomical and atmospheric remote sensing to space telecommunications, medical imaging, and security. In Astronomy the THz and far infrared (IR) portion of the electromagnetic spectrum (lambda = 300 to 10 mum) may hold the answers to countless questions regarding the origin and evolution of the Universe, galaxy, star and planet formation. Over the past decade, advances in telescope and detector technology have for the first time made this regime available to astronomers. Near THz frequencies, metallic hollow waveguide structures become so small, (typically much less than a millimeter), that conventional machining becomes extremely difficult, and in many cases, nearly impossible. Laser induced, micro-chemical etching is a promising new technology that can be used to fabricate three dimensional structures many millimeters across with micrometer accuracy. Laser micromachining of silicon possesses a significant edge over more conventional techniques. It does not require the use of masks and is not confined to crystal planes. A non-contact process, it eliminates tool wear and vibration problems associated with classical milling machines. At the University of Arizona we have constructed the first such laser micromachining system optimized for the fabrication of THz and far IR waveguide and quasi-optical components. The system can machine structures up to 50 mm in diameter, down to a few microns accuracy in a few minutes and with a remarkable surface finish. A variety of THz devices have been fabricated using this technique, their design, fabrication, assembly and theoretical performance is described in the chapters that follow.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.