• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Mathematical programming in data mining: Models for binary classification with application to collusion detection in online gambling

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3089927_sip1_m.pdf
    Size:
    2.307Mb
    Format:
    PDF
    Download
    Author
    Domm, Maryanne
    Issue Date
    2003
    Keywords
    Operations Research.
    Advisor
    Goldberg, Jeff
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Data mining is a semi-automated technique to discover patterns and trends in large amounts of data and can be used to build statistical models to predict those patterns and trends. One type of prediction model is a classifier, which attempts to predict to which group a particular item belongs. An important binary classifier, the Support Vector Machine classifier, uses non-linear optimization to find a hyperplane separating the two classes of data. This classifier has been reformulated as a linear program and as a pure quadratic program. We propose two modeling extensions to the Support Vector Machine classifier. The first, the Linearized Proximal Support Vector Machine classifier, linearizes the objective function of the pure quadratic version. This reduces the importance the classifier places on outlying data points. The second extension improves the conceptual accuracy of the model. The Integer Support Vector Machine classifier uses binary indicator variables to indicate potential misclassification errors and minimizes these errors directly. Performance of both these new classifiers was evaluated on a simple two dimensional data set as well as on several data sets commonly used in the literature and was compared to the original classifiers. These classifiers were then used to build a model to detect collusion in online gambling. Collusion occurs when two or more players play differently against each other than against the rest of the players. Since their communication cannot be intercepted, collusion is easier for online gamblers. However, collusion can still be identified by examining the playing style of the colluding players. By analyzing the record of play from online poker, a model to predict whether a hand contains colluding players or not can be built. We found that these new classifiers performed about as well as previous classifiers and sometimes worse and sometimes better. We also found that one form of online collusion could be detected, but not perfectly.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Systems and Industrial Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.