• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Facilitating knowledge discovery by integrating bottom-up and top-down knowledge sources: A text mining approach

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3089969_sip1_m.pdf
    Size:
    4.573Mb
    Format:
    PDF
    Download
    Author
    Leroy, Gondy A.
    Issue Date
    2003
    Keywords
    Business Administration, Management.
    Computer Science.
    Advisor
    Chen, Hsinchun
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation aims to discover synergistic combinations of top-down (ontologies), interactive (relevance feedback), and bottom-up (machine learning) knowledge encoding techniques for text mining. The strength of machine learning techniques lies in their coverage and efficiency because they can discover new knowledge without human intervention. The output, however, is often imprecise and irrelevant. Human knowledge, top-down or interactively encoded, may remedy this. The research question addressed is if knowledge discovery can become more precise and relevant with hybrid systems. Three different combinations are evaluated. The first study investigates an ontology, the Unified Medical Language System (UMLS), combined with an automatically created thesaurus to dynamically adjust the thesaurus' output. The augmented thesaurus was added to a medical, meta-search portal as a keyword suggester and compared with the unmodified thesaurus and UMLS. Users preferred the hybrid approach. Thus, the combination of the ontology with the thesaurus was better than the components separately. The second study investigates implicit relevance feedback combined with genetic algorithms designed to adjust user queries for online searching. These were compared with pure relevance feedback algorithms. Users were divided into groups based on their overall performance. The genetic algorithm significantly helped low achievers, but hindered high achievers. Thus, the interactively elicited knowledge from relevance feedback was judged insufficient to guide machine learning for all users. The final study investigates ontologies combined with two natural language processing techniques: a shallow parser and an automatically created thesaurus. Both capture relations between phrases in biomedical text. Qualified researchers found all terms to be precise; however, terms that belonged to ontologies were more relevant. Parser relations were all precise. Thesaurus relations were less precise, but precision improved for relations that had their terms represented in ontologies. Thus, this integration of ontologies with natural language processing provided good results. In general, it was concluded that top-down encoded knowledge could be effectively integrated with bottom-up encoded knowledge for knowledge discovery in text. This is particularly relevant to business fields, which are text and knowledge intensive. In the future, it will be worthwhile to extend the parser and also to test similar hybrid approaches for data mining.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Business Administation
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.