Show simple item record

dc.contributor.advisorHarris, David T.en_US
dc.contributor.authorHe, Xianghui
dc.creatorHe, Xianghuien_US
dc.date.accessioned2013-04-11T09:05:56Z
dc.date.available2013-04-11T09:05:56Z
dc.date.issued2003en_US
dc.identifier.urihttp://hdl.handle.net/10150/280415
dc.description.abstractImmuno-gene therapy is a promising approach for the control of cancer. Because of the essential role in activating and expanding T cell responses to antigens, cytokines are comprehensively studied for cancer therapy. The efficacy of cancer immunotherapy is diminished by the fact that spontaneous tumors often downregulate antigen expression and/or presentation. The density of tumor antigen in conjunction with major histocompatibility complex (MHC) class I molecules on the cell surface affects cytotoxic T cell (CTL) function. In this study, we have developed a novel approach to augment the effect of cytokine-based cancer immuno-gene therapy through the coupling of antigen expression/presentation with cytokine production by expression of antigen epitopes within cytokine signal peptides. We first investigated the possibility of modifying cytokine signal peptides with antigen epitopes without aborting function. We inserted the genes encoding the MHC class I restricted antigenic epitopes of chicken ovalbumin (OVA), tyrosinase related protein 2 (TRP-2), and oncoprotein HER2 into the signal sequence of the interleukin-2 (IL-2) gene, replacing part of the signal sequence at different positions. Our results showed that these modified signal peptides still functioned, as indicated by cytokine secretion. We then demonstrated that an antigen epitope contained within the modified signal peptide could be processed properly and presented on the tumor cell surface. Furthermore, using a murine melanoma model, we studied the effect of antigen epitope modified IL-2 and IFN-gamma on the immuno-gene therapy of malignancy. Tumor cells showed enhanced immunogenicity as indicated by increased susceptibility to CTL lysis in vitro and decreased tumor growth in vivo after gene modification with the antigen epitope-containing cytokine expression vectors. Vaccination with TRP-2 epitope-containing IFN-gamma gene-modified B16 cells resulted in protection against wild type tumor challenge. In addition, we investigated the possibility of using antigen epitope-containing cytokine expression plasmids as DNA vaccines. Our data showed that immunization with an OVA epitope-modified IL-2 expression plasmid resulted in protective immune responses to an OVA expressing tumor. In summary, the work presented here demonstrated that enhanced immunological effects could be achieved through coupling cytokine expression with antigen presentation. These findings provide potential perspectives in developing therapeutic or prophylactic vaccines for immuno-gene therapy of cancer.
dc.language.isoen_USen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectHealth Sciences, Immunology.en_US
dc.titleIncorporation of tumor antigen epitopes into cytokine signal peptides enhance the efficacy of immuno-gene therapyen_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest3108907en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineMicrobiology and Immunologyen_US
thesis.degree.namePh.D.en_US
dc.identifier.bibrecord.b44825328en_US
refterms.dateFOA2018-06-16T09:27:51Z
html.description.abstractImmuno-gene therapy is a promising approach for the control of cancer. Because of the essential role in activating and expanding T cell responses to antigens, cytokines are comprehensively studied for cancer therapy. The efficacy of cancer immunotherapy is diminished by the fact that spontaneous tumors often downregulate antigen expression and/or presentation. The density of tumor antigen in conjunction with major histocompatibility complex (MHC) class I molecules on the cell surface affects cytotoxic T cell (CTL) function. In this study, we have developed a novel approach to augment the effect of cytokine-based cancer immuno-gene therapy through the coupling of antigen expression/presentation with cytokine production by expression of antigen epitopes within cytokine signal peptides. We first investigated the possibility of modifying cytokine signal peptides with antigen epitopes without aborting function. We inserted the genes encoding the MHC class I restricted antigenic epitopes of chicken ovalbumin (OVA), tyrosinase related protein 2 (TRP-2), and oncoprotein HER2 into the signal sequence of the interleukin-2 (IL-2) gene, replacing part of the signal sequence at different positions. Our results showed that these modified signal peptides still functioned, as indicated by cytokine secretion. We then demonstrated that an antigen epitope contained within the modified signal peptide could be processed properly and presented on the tumor cell surface. Furthermore, using a murine melanoma model, we studied the effect of antigen epitope modified IL-2 and IFN-gamma on the immuno-gene therapy of malignancy. Tumor cells showed enhanced immunogenicity as indicated by increased susceptibility to CTL lysis in vitro and decreased tumor growth in vivo after gene modification with the antigen epitope-containing cytokine expression vectors. Vaccination with TRP-2 epitope-containing IFN-gamma gene-modified B16 cells resulted in protection against wild type tumor challenge. In addition, we investigated the possibility of using antigen epitope-containing cytokine expression plasmids as DNA vaccines. Our data showed that immunization with an OVA epitope-modified IL-2 expression plasmid resulted in protective immune responses to an OVA expressing tumor. In summary, the work presented here demonstrated that enhanced immunological effects could be achieved through coupling cytokine expression with antigen presentation. These findings provide potential perspectives in developing therapeutic or prophylactic vaccines for immuno-gene therapy of cancer.


Files in this item

Thumbnail
Name:
azu_td_3108907_sip1_m.pdf
Size:
3.290Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record