• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Static and dynamic reliability analysis of frame and shear wall structural systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3002515_sip1_m.pdf
    Size:
    2.313Mb
    Format:
    PDF
    Download
    Author
    Lee, Seung Yeol
    Issue Date
    2000
    Keywords
    Engineering, Civil.
    Advisor
    Haldar, Achintya
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Effective and accurate algorithms are developed to evaluate the reliability of frame and shear wall structural system subjected to both static and dynamic loadings. The basic deterministic finite element algorithm is based on the assumed stress-based finite element method in which the tangent stiffness can be expressed in explicit form and fewer elements are required to realistically capture the structural behavior. These features are desirable for developing an efficient reliability analysis algorithm for both static and dynamic cases. The presence of shear walls is represented by plate elements. The stiffness matrix for the combined system is then developed. To verify the accuracy of the deterministic algorithm, a 2-bay 2-story building consisting of five similar frames is considered. Only one frame is assumed to have shear walls. The responses of the frame with shear walls subjected to static and dynamic loadings are evaluated. The responses of the same structural system are also evaluated using a commercially available computer program. The results match very well, implying that the deterministic algorithm developed in this study is accurate. The deterministic algorithm is then extended to consider the uncertainty in the random variables. For the static case, a stochastic finite element-based approach consisting of the reliability approach, the first-order reliability analysis procedure and the finite element method is proposed. For the dynamic case, a hybrid approach consisting of the response surface method, the finite element method, the first-order reliability method and the linear iterative scheme is used. The unique feature of this algorithm is that the earthquake loading can be applied in the time domain. The material and cross-sectional properties, the damping and the magnification factors of earthquake time histories are considered to be random variables in this study. The reliability of a frame without and with shear walls is evaluated for the strength and serviceability performance functions. The results are verified using the Monte Carlo simulation technique.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Civil Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.