• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Subcytotoxic inorganic arsenic effects on mitochondria in a human proximal tubule cell line: Implications on mechanism of cell death

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3119974_sip1_m.pdf
    Size:
    7.359Mb
    Format:
    PDF
    Download
    Author
    Peraza, Marjorie Aida
    Issue Date
    2003
    Keywords
    Biology, Cell.
    Health Sciences, Toxicology.
    Advisor
    Gandolfi, A. Jay
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Arsenic is an environmental toxicant and a human carcinogen. The kidney is a known target organ for arsenic (As) and is critical for both arsenic biotransformation and elimination. This study investigates the potential of an immortalized human proximal tubular epithelial cell line, HK-2, to serve as a model for low level exposures of the human kidney to arsenic. Subcytotoxic concentrations of arsenite (≤ 10 μM) and arsenate (< 100 μM) were determined by leakage of LDH from cells exposed for 24 hours. Threshold concentrations of arsenite (1-10 μM) and arsenate (10-25 μM) were found to affect mitochondrial MTT processing. Biotransformation of arsenite or arsenate was determined using HPLC-ICP-MS to detect metabolites in cell culture media and lysates. Analysis of media revealed that arsenite was minimally oxidized to arsenate and arsenate was reduced to arsenite. Only arsenite was detected in cell lysates. Pentavalent methylated arsenicals were not detected following exposure to either inorganic arsenical. This demonstrates that the HK-2 cell line is capable of biotransforming inorganic arsenic, primarily reducing arsenate to arsenite. In addition, the mitochondria are a primary target for low-level arsenic toxicity. Previous studies show that at high doses (ppm) inorganic arsenic is toxic to mitochondria primarily by affecting cellular respiration. Mitochondrial injury was further assessed in HK-2 cells by examining mitochondrial membrane potential. Subcytotoxic arsenite caused mitochondrial depolarization, which could subsequently lead to permeability transition and apoptosis. Arsenite also induced translocation of phosphatidylserine to the outer layer of the plasma membrane, indicative of early apoptosis. To confirm whether subcytotoxic arsenite induces cellular and/or mitochondrial morphological alterations consistent with apoptosis, HK-2 cells were evaluated with both light and transmission electron microscopy. Classic morphological changes indicative of apoptosis were not observed at either the light microscopic nor the electron microscopic level; however, evidence of necrotic changes in cytoplasmic structure and morphology--particularly in the mitochondria--were apparent. Therefore, HK-2 cells appear to initiate apoptosis following subcytotoxic arsenite insult, but fail to complete apoptosis and undergo necrosis instead. Subcytotoxic arsenite can be sufficiently toxic to mitochondria that they lose their ability to keep the cell on course for apoptosis.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Pharmacology & Toxicology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.