We are upgrading the repository! A content freeze is in effect until November 22nd, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.
Modeling and analysis of GMPLS-based automatically switched optical network
Publisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Automatically Switched Optical Network (ASON) is an optical/transport network that has dynamic optical channel connection and configuration capability. To achieve such functions, an ASON must be equipped with a control plane that is responsible for setting up, releasing, and restoring an "optical channel (connection)" between edge network nodes. However, the details of how to implement and deploy an automatically switched optical network have not been specified and addressed. The IETF has been working on Generalized Multiple Protocol Label Switching (GMPLS) as a control plane to manage optical networks. GMPLS presents itself as the ideal candidate for ASON's control plane. The purpose of this dissertation is to study how to apply GMPLS to build an automatically switched optical network, and the research is being conducted in three stages: (1) the implementation of GMPLS in ASON, building a GMPLS-based Automatically Switched Optical Network (GASON), (2) development of an OPNET-based simulation framework for evaluating ASON wavelength routing algorithms, (3) the management of optical physical impairments in GASON, both in the optical network structure and the GMPLS control plane. These research areas have not yet been addressed by the optical network community. First, the dissertation focuses on the application of GMPLS concepts to control and manage wavelength-routed optical networks. The dissertation discusses the design and modeling of a GMPLS-based Optical Switching Router (GOSR). The GOSR is modeled on OPNET Modeler(c). Based on the developed GOSR model, the GMPLS-based Automatically Switched Optical Network (GASON) is simulated and analyzed. Different wavelength routing algorithms have been studied within the context of GASON. To cope with optical physical impairments, this dissertation proposes the islands of transparency network architecture and develops a constraint-based dynamic wavelength routing algorithm (CDRWA). The comparisons between island of transparency optical network and other types of optical network are made. The developed CDRWA algorithm is the first Routing and Wavelength Assignment (RWA) algorithm that considers optical physical impairments caused by the optical layers. Currently CDRWA uses the hop-number as its constraint.Type
textDissertation-Reproduction (electronic)
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Graduate CollegeElectrical and Computer Engineering