• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Optimizing the development and analysis of solution based metered dose inhalers

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3131602_sip1_m.pdf
    Size:
    3.314Mb
    Format:
    PDF
    Download
    Author
    Gupta, Abhishek
    Issue Date
    2004
    Keywords
    Health Sciences, Pharmacy.
    Advisor
    Myrdal, Paul B.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The current work focuses on the development and evaluation of techniques and models that can facilitate the development of solution based metered dose inhalers. These include an online reverse phase hplc method for analyte quantitation from propellant based pressurized metered dose inhalers. The technique ( direct injection method) finds applications in determining solubility of compounds in aerosol propellants and can possibly be used for stability analysis. With the development of this technique it would be feasible to generate a solubility database in order to understand the physico-chemical factors affecting the solubility and also possibly predict the solubility of compounds in HFA 134a propellant. The regular solution theory based on solubility parameter approach was evaluated for this purpose by utilizing a set of 35 diverse compounds in HFA 134a. A new product performance evaluation tool; the Model 3320 series Aerodynamic Particle Sizer (APS) used in conjunction with Model 3320 Impactor Inlet was evaluated for analysis of solution metered dose inhalers. The Model 3320 APS series provides rapid aerodynamic size distribution data and coupled with Model 3306 Impactor Inlet allows for the chemical analysis of the Inlet port, 'respirable' mass and 'non-respirable' mass. It was shown that in order to obtain comparable results between the Model 3306 Impactor Inlet and the Andersen Cascade Impactor (ACI), an extension to the USP throat may be necessary. The solubility data generated by the direct injection method coupled with the 'respirable deposition' data generated using the APS 3320 series can be used to optimize the product performance of cosolvent based solution metered dose inhalers.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Pharmaceutical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.