• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The role of acetylation in the hepatotoxicity of hydrazine

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3131635_sip1_m.pdf
    Size:
    3.219Mb
    Format:
    PDF
    Download
    Author
    Richards, Victoria Elizabeth
    Issue Date
    2004
    Keywords
    Health Sciences, Toxicology.
    Advisor
    McQueen, Charlene A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Isoniazid (INH) is an antimicrobial used around the world in the treatment and chemoprophylaxis of tuberculosis. Hepatotoxicity is a well-recognized adverse effect of INH therapy. Metabolites of INH, namely hydrazine (HD) and acetylhydrazine (AcHD), are believed to be responsible for this hepatotoxicity. Studies were initiated to test the hypothesis that HD and not AcHD administration results in alterations in hepatic lipid homeostasis. In adult male C57B1/6J mice doses up to 300 mg AcHD/kg, p.o. did not produce liver damage. In contrast, exposure to HD resulted in time- and dose-dependent decreases in plasma cholesterol as well as lipid accumulation leading to liver damage. Hepatic gene expression profiles were determined after administration of HD or AcHD (100 mg/kg, p.o.). The expression of genes involved in lipid synthesis, transport and metabolism, as well as genes associated with necrosis were altered by HD In contrast, AcHD produced fewer changes and did not result in the differential expression of genes involved in lipid accumulation or necrosis. Several of the genes changed by HD exposure are regulated by PPARalpha. The involvement of PPARalpha in HD-mediated steatosis was investigated in PPARalpha-deficient mice. Administration of HD to these mice induced greater hepatic lipid accumulation and macrovesicular degeneration than did its administration to wild-type mice. This is consistent with the role of PPARalpha in removing lipids from liver. The pathology and the microarray data suggest that the PPARalpha-deficient mice are less capable of meeting the demands of HD-mediated increases in hepatic lipid presentation. In the wild-type animals, PPARalpha is activated in response to HD-induced increases in fatty acids. Consequently, these mice are better able to compensate for the lipid accumulation. This is the first demonstration of a critical role for PPARalpha in response to HD-induced steatosis.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Pharmacology & Toxicology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.