• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Nulling interferometry for studying other planetary systems: Techniques and observations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3010268_sip1_m.pdf
    Size:
    3.165Mb
    Format:
    PDF
    Download
    Author
    Hinz, Philip Mark
    Issue Date
    2001
    Keywords
    Physics, Astronomy and Astrophysics.
    Advisor
    Angel, J. Roger P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Nulling interferometry is an important technique in the quest for direct detection of extrasolar planets. It is central to NASA's plans for a Terrestrial Planet Finder (TPF) mission to detect and characterize Earth-like planets. This thesis presents the first experiments to demonstrate that the technique is a useful tool for ground-based observations as well. It demonstrates the ability of the technique to study faint, circumstellar environments otherwise not easily observed. In addition the observations and experiments allow more confident estimation of expected sensitivity to planetary systems around nearby stars. The old MMT was used for the first telescope experiments of stellar suppression via nulling. The stellar suppression achieved was sufficient to observe thermal emission from cool dust in the outflows around late-type stars. Based on the original MMT prototype, which worked at ambient temperature, I have constructed a cryogenic nulling interferometer for use with the renovated 6.5 m MMT. Features include the capability of sensing and correcting the phase between the two arms of the interferometer, achromatic tuning of the null using a unique symmetric beam-splitter, and compatibility with the deformable secondary of the MMT. The instrument has been used in a laboratory setup with an artificial source to demonstrate a high level of suppression. Commissioning of the instrument took place at the MMT in June 2000 using the fixed f/9 secondary. The instrument was aligned, phased, and used for science observations of 17 stars over five nights. The future impact of nulling with the MMT and the Large Binocular Telescope is sketched out. These telescopes will be sensitive to very faint levels of zodiacal dust, indicative of planetary companions and giving us clues as to the make up of planetary systems. Substellar companions down to near Jupiter mass will be detectable around the nearest stars for the LBT, allowing direct imaging of long-period giant planets. The detection of such companions will be complementary to the Doppler velocity searches, currently so successful in verifying the existence of planets, thus giving a balanced view of the prevalence and range of separations possible for giant planets around nearby stars.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Astronomy
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.