• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    On the path to elucidating the speciation of mercury in the flue gases of coal combustion

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3132268_sip1_m.pdf
    Size:
    13.05Mb
    Format:
    PDF
    Download
    Author
    Wilcox, Jennifer
    Issue Date
    2004
    Keywords
    Engineering, Chemical.
    Advisor
    Blowers, Paul
    Wendt, Jost O. L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The goal of this research is to understand the speciation of mercury in the flue gases of coal combustion. As the flue gas cools, thermochemical equilibrium calculations indicate that elemental mercury, Hg⁰, is converted to oxidized mercury, Hg²⁺, in the form of HgO or HgCl₂. Hg⁰ is insoluble in water, HgO has low solubility in water and HgCl₂ is highly soluble in water. Since HgCl₂ is water-soluble, it can be captured in wet chemical scrubbers to prevent its release to the atmosphere. Therefore, the understanding of the mechanisms of mercury's oxidation in flue gases is paramount when considering mercury capture. This research attempts to elucidate the mechanisms of oxidation through a detailed kinetic and thermodynamic analysis. The current research focuses specifically on the oxidation of mercury via chlorine-containing compounds. Future research will involve the oxidation via oxygen-containing compounds and the effect of SO₂ and NOₓ compounds on mercury's oxidation. Quantum chemistry is used to determine accurate transition structures, which are required for the calculation of activation energies and rate constants from theory. Simultaneous to the theoretical work, an experimental apparatus has been designed and fabricated with the inclusion of a quadrupole mass spectrometer. The mass spectrometer is used in conjunction with a laminar flow reactor to simulate the oxidation of mercury via chlorine-containing compounds in flue gases. The ultimate goal of this research is to obtain a potential mercury oxidation mechanism based upon theoretically predicted kinetic parameters, which are then validated through concentration profiles obtained from experimental measurements. In addition, results from the experimental work indicate that at ambient conditions, the oxidation of mercury via chlorine may result as a consequence of heterogeneous reactions involving the Pyrex reactor surface. This work not only allows for a more thorough understanding of mercury's speciation in the flue gas environment, but also questions current sampling devices and their potential interference with reactivity measurements involving mercury-chlorine species.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemical and Environmental Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.