• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Nonsteady pressure affects large arteries and endothelium

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3145034_sip1_m.pdf
    Size:
    4.898Mb
    Format:
    PDF
    Download
    Author
    Alberding, Jonathan Paul
    Issue Date
    2004
    Keywords
    Engineering, Biomedical.
    Advisor
    Baldwin, Ann L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Convective fluid motion through artery walls aids in transvascular transport of macromolecules. Although measurements of convective filtration have been reported, they were all obtained under constant transmural pressure. However, arterial pressure in vivo is pulsatile. Therefore experiments were designed to compare filtration under steady and pulsatile pressure conditions. Hydraulic conductance was measured in cannulated excised rabbit carotid arteries at steady pressure. Next, pulsatile pressure trains were applied within the same vessels, and simultaneously, arterial distension was monitored using Optical Coherence Tomography (OCT). For each pulse train, the volume of fluid lost through filtration was measured (subtracting volume change due to residual distension), and compared to that predicted from steady pressure measurements. In order to determine the role of the endothelium in this response, and the effect of increasing pulsatile frequency from an initial value, one of each pair was de-endothelialized in some cases, and in other experiments a pulsatile pressure of 1 Hz was initially applied, followed by a pulsatile frequency of 2 Hz. In all cases the experimental filtration volumes were significantly increased compared to those predicted for steady pressure, but over time, the magnitude of the excess fluid loss was reduced. For de-endothelialized vessels, this reduction was not so marked. These studies suggest that changes in arterial pulsatility may transiently increase convective flux of macromolecules into the artery wall and that this is regulated by the endothelium. In a parallel study, Bovine Aortic Endothelial Cells (BAEC) were exposed to a transient pressure gradient and then held at 20 mmHg for ten or thirty minutes. After staining for actin fibers and/or catenin, the cells were examined using a deconvolution microscope. The location of actin fibers changed from the body of the cell (central fibers) to the edges of the cell (peripheral fibers), and beta-catenin increased around the periphery. This result indicates that cultured endothelial cells can sense a change in transcellular pressures and respond so as to maintain cell-to-cell adhesion. Overall, the observed responses of arteries and endothelial cells to transient pressure gradients in these studies suggest a dynamic role for the endothelium in regulating transvascular transport in vivo.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Biomedical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.