We are upgrading the repository! A content freeze is in effect until December 6th, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.advisorBowden, G. Timothyen_US
dc.contributor.authorBachelor, Michael A.
dc.creatorBachelor, Michael A.en_US
dc.date.accessioned2013-04-11T09:18:31Z
dc.date.available2013-04-11T09:18:31Z
dc.date.issued2004en_US
dc.identifier.urihttp://hdl.handle.net/10150/280585
dc.description.abstractThe ultraviolet (UV) component of sunlight has been identified as a major etiological factor in the development of non-melanoma skin cancer (NMSC). Upregulation of Activator Protein-1 (AP-1) and Cyclooxygenase-2 (COX-2) have clearly demonstrated a functional role in skin tumor promotion. The goal of this work was to contribute to the growing knowledge of UVA and UVB induced signaling events leading to increases in AP-1 and COX-2. We show that UVA induces COX-2 expression in the human keratinocyte cell line, HaCaT through a post-transcriptional mechanism involving the 3 ' untranslated region (3'UTR). Use of a pharmacological inhibitor of p38 MAPK, SB202190, decreased UVA-induced COX-2 steady-state mRNA and protein levels. The stability of COX-2 mRNA is increased in UVA-irradiated cells and dependent upon p38 MAPK activity. We further explored the role of UVA-induced p38 MAPK activity in apoptosis in both HaCaT cells and primary keratinocytes. Dramatic increases in apoptosis were observed in UVA-irradiated cells treated with SB202190 or through the use of a dominant-negative construct. UVA induced expression of Bcl-X L with abrogation of expression using SB202190. Overexpression of Bcl-X L prevented PARP (Poly ADP-ribose Polymerase) cleavage induced by the combination of UVA and p38 MAPK inhibition. We further demonstrated that UVA enhanced the stability of Bcl-XL mRNA through increases in p38 MAPK activity mediated through the 3' UTR. p38 MAPK and Bcl-XL expression play critical roles in the survival of UVA-irradiated keratinocytes. Previous investigations from the laboratory identified p38 MAPK and PI3-Kinase as the major mediators of UVB-induced AP-1 and COX-2 in the HaCaT cell line. To further validate p38 MAPK and PI3-Kinase as potential molecular targets we investigated whether an acute UVB dose activated the p38 MAPK and PI3-Kinase pathways in vivo. We observed rapid increases in both p38 MAPK and PI3-Kinase signaling in mouse epidermis. Activation of these pathways resulted in the phosphorylation of cyclic AMP response element binding protein (CREB). Topical treatment with SB202190 or LY294002 (a specific inhibitor of PI3-Kinase) significantly decreased UVB-induced COX-2 expression and AP-1 activation in vivo. Our data suggest that p38 MAPK and PI3-Kinase may serve as significant molecular targets for the chemoprevention of UVB-induced NMSC.
dc.language.isoen_USen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectBiology, Molecular.en_US
dc.subjectHealth Sciences, Oncology.en_US
dc.titleIdentification of molecular targets for the chemoprevention of non-melanoma skin canceren_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest3145038en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineCancer Biologyen_US
thesis.degree.namePh.D.en_US
dc.identifier.bibrecord.b47210084en_US
refterms.dateFOA2018-09-05T13:42:15Z
html.description.abstractThe ultraviolet (UV) component of sunlight has been identified as a major etiological factor in the development of non-melanoma skin cancer (NMSC). Upregulation of Activator Protein-1 (AP-1) and Cyclooxygenase-2 (COX-2) have clearly demonstrated a functional role in skin tumor promotion. The goal of this work was to contribute to the growing knowledge of UVA and UVB induced signaling events leading to increases in AP-1 and COX-2. We show that UVA induces COX-2 expression in the human keratinocyte cell line, HaCaT through a post-transcriptional mechanism involving the 3 ' untranslated region (3'UTR). Use of a pharmacological inhibitor of p38 MAPK, SB202190, decreased UVA-induced COX-2 steady-state mRNA and protein levels. The stability of COX-2 mRNA is increased in UVA-irradiated cells and dependent upon p38 MAPK activity. We further explored the role of UVA-induced p38 MAPK activity in apoptosis in both HaCaT cells and primary keratinocytes. Dramatic increases in apoptosis were observed in UVA-irradiated cells treated with SB202190 or through the use of a dominant-negative construct. UVA induced expression of Bcl-X L with abrogation of expression using SB202190. Overexpression of Bcl-X L prevented PARP (Poly ADP-ribose Polymerase) cleavage induced by the combination of UVA and p38 MAPK inhibition. We further demonstrated that UVA enhanced the stability of Bcl-XL mRNA through increases in p38 MAPK activity mediated through the 3' UTR. p38 MAPK and Bcl-XL expression play critical roles in the survival of UVA-irradiated keratinocytes. Previous investigations from the laboratory identified p38 MAPK and PI3-Kinase as the major mediators of UVB-induced AP-1 and COX-2 in the HaCaT cell line. To further validate p38 MAPK and PI3-Kinase as potential molecular targets we investigated whether an acute UVB dose activated the p38 MAPK and PI3-Kinase pathways in vivo. We observed rapid increases in both p38 MAPK and PI3-Kinase signaling in mouse epidermis. Activation of these pathways resulted in the phosphorylation of cyclic AMP response element binding protein (CREB). Topical treatment with SB202190 or LY294002 (a specific inhibitor of PI3-Kinase) significantly decreased UVB-induced COX-2 expression and AP-1 activation in vivo. Our data suggest that p38 MAPK and PI3-Kinase may serve as significant molecular targets for the chemoprevention of UVB-induced NMSC.


Files in this item

Thumbnail
Name:
azu_td_3145038_sip1_m.pdf
Size:
7.712Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record