We are upgrading the repository! A content freeze is in effect until November 22nd, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.advisorWalker, Chrisen_US
dc.contributor.advisorReagan, Johnen_US
dc.contributor.authorEatchel, Andrew L.
dc.creatorEatchel, Andrew L.en_US
dc.date.accessioned2013-04-11T09:19:42Z
dc.date.available2013-04-11T09:19:42Z
dc.date.issued2004en_US
dc.identifier.urihttp://hdl.handle.net/10150/280604
dc.description.abstractThe concept of building a space based telescope capable of directly imaging extra-solar planetary systems has been in existence for more than a decade. While the basic ideas of how such an instrument might work have already been discussed in the literature, specific details of the design have not been addressed that will enable a telescope of this class to be functionally realized. A straw man configuration of the instrument is examined here for its ability to acquire data of sufficient informational content and quality to produce images and spectra of distant planetary systems and to find what technical problems arise from analyzing the interferograms it delivers. Computer programs that simulate the signals expected to be produced by a structurally connected instrument (SCI) version of Terrestrial Planet Finder (TPF) and reconstruct images from those signals will be presented along with programs that extract planetary parameters. An abbreviated radiometric performance analysis will also be provided that will assist astronomers in designing an appropriate mission.
dc.language.isoen_USen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectPhysics, Astronomy and Astrophysics.en_US
dc.titleImaging exo-solar planetary systems with Terrestrial Planet Finderen_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest3145064en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineElectrical and Computer Engineeringen_US
thesis.degree.namePh.D.en_US
dc.identifier.bibrecord.b4721241xen_US
refterms.dateFOA2018-09-05T13:55:04Z
html.description.abstractThe concept of building a space based telescope capable of directly imaging extra-solar planetary systems has been in existence for more than a decade. While the basic ideas of how such an instrument might work have already been discussed in the literature, specific details of the design have not been addressed that will enable a telescope of this class to be functionally realized. A straw man configuration of the instrument is examined here for its ability to acquire data of sufficient informational content and quality to produce images and spectra of distant planetary systems and to find what technical problems arise from analyzing the interferograms it delivers. Computer programs that simulate the signals expected to be produced by a structurally connected instrument (SCI) version of Terrestrial Planet Finder (TPF) and reconstruct images from those signals will be presented along with programs that extract planetary parameters. An abbreviated radiometric performance analysis will also be provided that will assist astronomers in designing an appropriate mission.


Files in this item

Thumbnail
Name:
azu_td_3145064_sip1_m.pdf
Size:
7.420Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record