• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Molecular dynamics simulations of brittle fracture in amorphous silica

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3145108_sip1_m.pdf
    Size:
    4.082Mb
    Format:
    PDF
    Download
    Author
    Muralidharan, Krishna
    Issue Date
    2004
    Keywords
    Engineering, Materials Science.
    Advisor
    Simmons, Joseph H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Fracture in brittle materials under a macroscopic load, results from the propagation of atomic-scale defects/cracks under the influence of a local stress field. These local stress fields are significantly higher than the macroscopic stress applied, causing local rearrangement of atoms around the crack tip and a consequent straining of atomic bonds that ultimately break, leading to separation of the material. The brittle fracture process has been a subject of many simulations and experiments, but the exact nature of atomic rearrangement that occurs in the regions of high stress has not yet been clearly identified. Thus, a primary objective was to accurately characterize the atomic restructuring in these critical regions. The method of molecular dynamics (MD), a widely used atomistic computation tool, was used to study the atomic-scale dynamics that take place during fracture of a typical brittle material---amorphous silica (a-SiO2). The interatomic interactions were represented by potential functions derived from first-principles. The effects of charge-transfer and temperature on the fracture process of a-SiO2 samples of different densities were investigated as a function of uniaxial strain-rates (0.1/ps-0.005/ps). A mechanism involving growth and coalescence of voids previously identified to underlie the process of brittle fracture was studied in detail in this thesis as a function of interatomic potential function, charge transfer and temperature. The regions surrounding these voids were found to be characterized by edge-sharing silica tetrahedra, while the rest of the material retained the bulk structure (corner-sharing tetrahedra) of silica glass. A secondary objective of this research work was to develop multiscale methodologies capable of modeling typical 'materials' problems like fracture. A global representation of the fracture process needs a seamless coupling of techniques capable of modeling different length and time scales. Specifically, far away from the critical regions, where the system is in elastic conditions, it is computationally prudent as well as scientifically elegant to use continuum-level simulation schemes like finite elements (FE) and finite difference time domain methods (FDTD) rather than atomistics, and only use atomistic simulations to model the highly strained regions. In this work, a continuum-FDTD region was coupled to an atomistic-MD region to study the propagation characteristics of a stress wave with broadband spectral features. The 'mismatch' in the coupling was quantified by analyzing the amount of reflection of the probing wave from the FDTD-MD interface. The above described work forms the basis for future fracture studies.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Materials Science and Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.