• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Decomposition algorithms for stochastic combinatorial optimization: Computational experiments and extensions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3145114_sip1_m.pdf
    Size:
    4.017Mb
    Format:
    PDF
    Download
    Author
    Ntaimo, Lewis
    Issue Date
    2004
    Keywords
    Engineering, Industrial.
    Engineering, System Science.
    Operations Research.
    Advisor
    Sen, Suvrajeet
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Some of the most important and challenging problems in computer science and operations research are stochastic combinatorial optimization (SCO) problems. SCO deals with a class of combinatorial optimization models and algorithms in which some of the data are subject to significant uncertainty and evolve over time, and often discrete decisions need to be made before observing complete future data. Therefore, under such circumstances it becomes necessary to develop models and algorithms in which plans are evaluated against possible future scenarios that represent alternative outcomes of data. Consequently, SCO models are characterized by a large number of scenarios, discrete decision variables and constraints. This dissertation focuses on the development of practical decomposition algorithms for large-scale SCO. Stochastic mixed-integer programming (SMIP), the optimization branch concerned with models containing discrete decision variables and random parameters, provides one way for dealing with such decision-making problems under uncertainty. This dissertation studies decomposition algorithms, models and applications for large-scale two-stage SMIP. The theoretical underpinnings of the method are derived from the disjunctive decomposition (D 2) method. We study this class of methods through applications, computations and extensions. With regard to applications, we first present a stochastic server location problem (SSLP) which arises in a variety of applications. These models give rise to SMIP problems in which all integer variables are binary. We study the performance of the D2 method with these problems. In order to carry out a more comprehensive study of SSLP problems, we also present certain other valid inequalities for SMIP problems. Following our study with SSLP, we also discuss the implementation of the D2 method, and also study its performance on problems in which the second-stage is mixed-integer (binary). The models for which we carry out this experimental study have appeared in the literature as stochastic matching problems, and stochastic strategic supply chain planning problems. Finally, in terms of extensions of the D 2 method, we also present a new procedure in which the first-stage model is allowed to include continuous variables. We conclude this dissertation with several ideas for future research.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Systems and Industrial Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.