• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Design and analysis of solder connections using accelerated approximate procedure with disturbed state concept

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3145145_sip1_m.pdf
    Size:
    8.658Mb
    Format:
    PDF
    Download
    Author
    Whitenack, Russell D.
    Issue Date
    2004
    Keywords
    Engineering, Civil.
    Engineering, Mechanical.
    Engineering, Materials Science.
    Advisor
    Desai, Chandrakant
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The accelerated approximate procedure developed and used herein for analysis, design and parametric optimization in electronic packaging is based on the disturbed state concept (DSC) and the hierarchical single surface (HISS) constitutive models. Over the past many years the benefits of the DSC/HISS model, compared to those of available plasticity models, have been demonstrated and validated for a wide range of materials and solder connections. When the DSC/HISS model is implemented in a two-dimensional finite element code, it is well suited for failure analyses of lead/tin solder connections under cyclic thermal and mechanical loading that are typically occur in electronic packages. Unfortunately, an analysis of a single solder connection, for approximately 4000 or more cycles, can require much effort and computer time, which may be too long to be of practical use. The accelerated approximate procedure significantly reduces the effort and the analysis time to approximately 10 to 15 minutes on a Pentium 4, 3.2 GHz personal computer. The main emphasis of this dissertation is the use of the unified DSC model with the finite element procedure to predict the behavior of chip-substrate solder connections. The DSC code is used to validate the performance of a number of packages (144 BPGA, 313 PBGA) tested in the laboratory under thermomechanical loading. Using the accelerated approximate procedure, the effect of the variable thickness solder connection in a plane stress idealization is compared with that of the constant thickness assumption, and a three-dimensional analysis. It shows that the analysis with variable thickness (in plane stress idealization) yields improved results. The accelerated approximate procedure is then used to perform parametric design analyses of a solder connection by varying a number of important factors such as connection size, shape and misalignment. The effects of varying the DSC/HISS parameters on cycle life are also analyzed. The results of this research can be used for design, analysis and failure life prediction of solder connections in electronic packages. The accelerated approximate procedure is considered to yield improved results compared to other available modeling methods.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Civil Engineering and Engineering Mechanics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.