• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Gas phase surface preparation and activation of silicon using ultraviolet activated chemistries

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3158090_sip1_m.pdf
    Size:
    3.225Mb
    Format:
    PDF
    Download
    Author
    Finstad, Casey Charles
    Issue Date
    2004
    Keywords
    Chemistry, General.
    Engineering, Chemical.
    Advisor
    Muscat, Anthony J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Microelectronic devices have been scaled down to the point where lateral dimensions are on the order of a hundred atoms and a film thicknesses might be less than ten atoms. This makes surface preparation an increasingly important part of the fabrication process. The atoms and molecules terminating surfaces between processing steps are now a relatively large fraction of the overall film thickness. These terminating monolayers have to function as passivation layers, diffusion barriers, and seed layers for subsequent thin film depositions. This work demonstrates that precise control of the atoms and molecules on a silicon surface can be achieved using gas phase processes. The Research Cluster Apparatus (RCA) was built with a reactor for oxide removal using hydrofluoric acid and water vapor (HF/vapor), and a reactor for the removal of metallic and organic contaminates using ultraviolet activated chlorine gas (UV-Cl₂). Both reactors were integrated via high vacuum with a surface analysis chamber so samples could be characterized without atmospheric exposure. The capabilities of the system were demonstrated by using an HF/vapor (100 Torr, 27°C, 200 s) and UV-Cl₂ (10 Torr Cl₂, 90°C, 15 min) sequence to remove a mixed oxide/fluorocarbon residue, characteristic of contamination generated by reactive ion etching (RIE). To demonstrate the metals removal capability, oxidized copper was cleaned from silicon. The UV-Cl₂ chemistry leaves the surface terminated with chlorine atoms, rather than hydrogen, promoting a deposition reaction with ammonia (1-1000 Torr, 75°C, 5-60 min) to produce a surface terminated with up to 0.3 monolayers of surface amine groups, as measured by XPS. The highly polar N-H bonds of surface amines can be used as a seed layer to promote nucleation of high-k dielectric films deposited on silicon using atomic layer deposition (ALD). To enhance the deposition of the amines, photolysis (λ < 217 nm) of gas phase ammonia (UV-NH₃) generated NH₂ photofragments that reacted with hydrogen terminated Si(100), saturating at up to 1.7 ML (10 Torr NH₃, 75°C, 35 mW/cm²). These processes help enable further miniaturization by adding another mechanism for atomic-level manipulation of surface properties to the nanotechnology toolbox.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemical and Environmental Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.