• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Acute activation of conserved synaptic signaling pathways in Drosophila melanogaster

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3158104_sip1_m.pdf
    Size:
    3.403Mb
    Format:
    PDF
    Download
    Author
    Hoeffer Jr., Charles Albert
    Issue Date
    2005
    Keywords
    Biology, Molecular.
    Biology, Neuroscience.
    Advisor
    Ramaswami, Mani
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Studies of memory have identified several memory classifications: declarative, implicit, working, and anesthesia-resistant. One simple classification that may be applied to the array of model systems now used to explore memory is the requirement for de novo gene expression and protein synthesis for the formation of long-term memory (LTM). Short-term memory (STM) appears to require the modification of pre-existing neuronal molecules and is resistant to inhibitors of protein synthesis. These molecules, believed to encode proteins that effect long-lasting neuronal changes likely at the level of the synapse, are manifested behaviorally as memory. Neural activity regulates the cellular decision to synthesize these molecules, yet the identity and function of these molecules are largely unknown. What is known has largely been elucidated by work in mollusks and vertebrates in which procedures have been developed to generate neural activity sufficient to induce long-lasting, protein synthesis-dependent neuronal plasticity. Using these procedures, several key intracellular signaling pathways (Ras/ERK, cAMP/PKA) and important early gene products (arc, zif268, AP1) critical to memory have been identified. Similar procedures are not presently available in Drosophila. Establishing these procedures would greatly enhance the Drosophila model system for identification of plasticity molecules and mechanisms that control their expression. We have explored the potential of conditional Drosophila seizure mutants of comatose and CaP60A mutants for the development of a neural activity generation paradigm capable of (1) inducing long lasting and robust neural activity; (2) acute and persistent activation of the ERK signaling pathway and induction of Drosophila homologs of immediate early genes known to be involved in plasticity; (3) alteration of synaptic localization of fasciclin II, a known effector of synaptic plasticity. Using these mutants, we have established the conservation in insects of a known neural activity regulated signaling pathway shown to be critical to both long term plasticity and memory. Secondly, we have identified a central role for AP1, a classical activity induced gene, in regulating Drosophila neural plasticity. The neural activity paradigm coupled with the identification AP1 dual control of both major branches of long term neuronal change, structural and functional plasticity, provides researchers valuable tools for addressing some the outstanding questions facing the plasticity field today.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Biochemistry and Molecular Cellular Biology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.