• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Statistical variations including random dopant fluctuations in nominally identical MOSFETs

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3158125_sip1_m.pdf
    Size:
    2.694Mb
    Format:
    PDF
    Download
    Author
    Ma, Sean Tzu
    Issue Date
    2004
    Keywords
    Engineering, Electronics and Electrical.
    Advisor
    Brews, John R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Statistical variations in physically proximate iso-drawn MOSFETs limit the yield and performance of VLSI circuits and thus receive the attention of integrated circuit communities. As technology scales, variations must be made to scale as well. Some variations can be reduced by tighter control of processes. However, some variations such as random dopant fluctuations (RDF) may not be controllable, or are amenable to control only by radical and expensive changes in manufacturing methodology. Before undertaking such changes, it is prudent to see whether RDF really is a problem, and to do this we need an accurate estimate of the size of RDF effects. This work advances these goals. The first part of this dissertation provides an experimental assessment of different variation sources and a comparison of their contributions to transistor performance variation. Our study shows that macroscopic geometrical variations are significant and cannot be ignored. The second part of the dissertation presents a novel approach to assessing how potential at any position in the MOSFET channel is affected by accidental arrangements of point charges. The potential and the statistics are treated exactly for the first time. We find that as device scaling reaches the sub-10 nm regime, the earlier RDF work becomes unacceptable because the approximation made of lumping charge on numerical mesh nodes becomes too inaccurate. Our method is freed from this approximation because the potential and the statistics are determined analytically. Moreover, our method proves efficient computationally compared to the existing numerical analyses. The remaining part assesses the impact of MOSFET scaling on the potential variation introduced by RDF. It is shown for the first time that charge location variations dominate charge number variations. We examine the role of structural parameters upon the potential variation, including oxide thickness t, depletion width w, device area L², number nu of charges present, number N of sites available for the charges to reside, and average charge density/cm² N(S). Our study shows that reduction in L at a fixed N(S), t and w has no effect until the device radius becomes smaller than a screening radius. At this point, further reduction gives rise to a smaller standard deviation of potential σ and mean potential μ, but a larger σ/μ. This last trend is due to charge location variations, and contradicts previous approximate treatments that show an opposite trend in σ.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Electrical and Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.