• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Therapeutic alteration of T cell development: Modulating diabetogenic and regulatory T cells in the treatment of type 1 diabetes mellitus

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3158169_sip1_m.pdf
    Size:
    4.843Mb
    Format:
    PDF
    Download
    Author
    White, Todd Christopher
    Issue Date
    2005
    Keywords
    Health Sciences, Immunology.
    Advisor
    DeLuca, Dominick
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In this dissertation we investigate the role of avidity in the T cell selection process by examining the impact of signal modulation on T cell and/or NKT cell development. Projects discussed herein (including peptide, anti-CD1d, and hydrocortisone (HC) therapy) examine how changes in avidity can be used to explore potential therapies for Type 1 diabetes mellitus (T1DM). In the case of peptide therapy, we find that fetal thymic organ culture (FTOC), treated with exogenous diabetes related GAD peptides, lose their ability to generate T cell responses to GAD treatment peptides. Also, peptide therapy is shown to inhibit T1DM in vitro (ivT1DM) and in vivo. The abnormally high level of GAD peptides that are presented during peptide therapy treatment are thought to increase avidity between peptide specific T cells and selecting cells during thymic education, leading to increased negative selection of those T cells. In the case of anti-CD1d, FTOC from C57BL/6 (B6) and non-obese diabetic (NOD) mice, when treated with 10 μg/mL of anti-CD1d, show divergent responses to treatment. In response to anti-CD1d, "normal" B6 FTOC shows decreased T cell development and NKT production. Conversely, "poor signaling" NOD mice show no major impact on general T cell development but instead show increases in NKT cell production. Also, treatment with anti-CD1d is shown to inhibit diabetes in our ivT1DM model. These effects are thought to be due to increases in avidity generated through anti-CD1d related increased TCR expression. Changes in avidity caused by anti-CD1d treatment are thought to generate increased negative selection in B6 FTOC, while the same avidity increases are thought to increase positive selection (without increasing negative selection) in "poor signaling" NOD FTOC. In the case of HC treatment, B6 FTOC treated with HC show changes in T cell yield, maturity, and TCR Vβ usage. Research with HC indicates that signal inhibitors have the capacity to change T cell development in a dose and time dependent manner. Based on this work, selection signal inhibitors or enhancers may have the capacity to change T cell development in a fashion that decreases autoimmune T cells and/or enhances regulatory NKT cell development.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Microbiology and Immunology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.