• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Select problems in planetary structural Geology: Global-scale tectonics on Io, regional-scale kinematics on Venus, and local-scale field analyses on Earth with application to Mars

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3158212_sip1_m.pdf
    Size:
    3.097Mb
    Format:
    PDF
    Download
    Author
    Jaeger, Windy Lee
    Issue Date
    2005
    Keywords
    Geology.
    Physics, Astronomy and Astrophysics.
    Advisor
    Baker, Victor R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Io's mountains are cataloged in order to investigate their formation. Of the 101 mountains imaged with sufficient coverage and resolution for further analysis, 4 are volcanoes, and 97 are tectonic massifs. Of the 97 tectonic mountains, ≥40 abut paterae (volcanic or volcano-tectonic depressions). This juxtaposition is unlikely to be coincidental as the probability of it occurring by chance is ∼1.08%. The observed mountain-patera association may be due to orogenic faults acting as conduits for magma ascent, thus fueling patera formation near mountains. As resurfacing buries a shell of material from Io's surface to the base of the lithosphere, its effective radius is reduced and it heats up. The volume change due to subsidence and thermal expansion is calculated as a function of lithospheric thickness. Conservation of volume dictates that this material is uplifted at Io's surface. By estimating the total volume of mountains, Io's average lithospheric thickness is constrained to ≥12 km. A kinematic analysis of Nefertiti Corona, Venus, reveals that the corona's interior moved east as a relatively coherent thrust sheet with most deformation occurring on the distal margin. Additionally, an en-echelon array indicates a history of semi-brittle deformation on the northern side of Nefertiti's tectonic annulus. Regional heating from the thermal diapir that formed Nefertiti probably reduced the crustal viscosity and enabled the semi-brittle deformation. The "Odessa Craters" in the Channeled Scabland of eastern Washington State are basaltic ring structures (BRSs) 50-500 m in diameter that are comprised of discontinuous, concentric outcrops of subvertically-jointed basalt and autointrusive basaltic dikes. It is postulated that they formed as follows: phreatovolcanic activity disrupted a relatively thin, active lava flow forming rootless cones; the lava flow inflated around the cones; tensile stresses caused concentric fracturing; dikes exploited the fractures and fed lava to the surface; and subsequent erosive floods excavated the structures. A second population of BRSs near Tokio Station, WA, are morphologically analogous to quasi-circular structures in Athabasca Valles, Mars (a region that is geologically similar to the Channeled Scabland). If the martian features formed as BRSs, then they indicate local water-lava interactions and at least two floods through Athabasca Valles.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Planetary Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.