We are upgrading the repository! A content freeze is in effect until December 6th, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.
Fabrication, analysis and patterning of sol-gel based silica ultrathin films
Author
Robertson, Joseph William F.Issue Date
2004Keywords
Chemistry, Analytical.Advisor
Pemberton, Jeanne
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
A novel approach to sol-gel thin film fabrication has been developed which leads to the production of ultrathin ∼2 nm to 100 nm thick silica and conductively-doped silica films on metal and semiconductor substrates. The research described herein focuses on the development, characterization and potential application of these thin films in current technology. These ultrathin films were fabricated by a sol-gel procedure, which utilized highly diluted silica precursor compounds. The [H₂O]:[Si] ratio ranged from 50 to 1000, far above the typical values (4-10) used in sol-gel film preparation. This dilution leads to highly densified silica when spin-cast onto an appropriately compatible surface. The surface examined included Si(111)/SiO₂; ITO; and 3-(mercaptopropyl)trimethoxysilane (3MPT) modified Au and Ag. These surfaces must act as wetting control agents for the sol-gel precursor, while simultaneously providing adhesion to the nm sized sol-gel aggregates. The 3MPT-Ag monolayer was examined in detail by Tl, Pb and Cd underpotential deposition electrochemistry, to understand the interfacial structure of the molecule. These results show that the 3MPT monolayer is very stable to outside influences (i.e. Tl and Pb reversibly deposit monolayers at the metal surface). The UPD of metal ions is highly size dependent with Tl depositing with fewer kinetic limitations than Pb and Cd not depositing at all. Raman spectral characterization shows that 3MPT undergoes some reversible rearrangement during the UPD process. The electronic properties of the pure silica films were examined in great detail. The results suggested that in solution, a solvated gel layer at the film-solution interface gives rise to an anomalously low capacitance <100 pF/cm², which has no comparison in the current literature. In the dry state, these silica films have a dielectric constant of ε = 3.5, which is close to that of thermally-grown silica on silicon (3.9). These films were doped with 1,1'-bistriethoxysilylferrocene, an electrochemically-active sol-gel material. The results suggest that under the proper precursor solution conditions, thin ( <10 nm), uniform films can be fabricated. By simply adjusting the ratio of the ferrocene moiety in solution, the film composition can be adjusted. XPS verifies that the atom ratio in solution is near to the observed atom ratio in the films, with some indication of surface segregation of the ferrocene moiety. Electrochemical analysis of these films suggests that electron hopping between the ferrocene centers drives the electrochemical response only when there are pinhole defects, to support counterion conduction to the surface. (Abstract shortened by UMI.)Type
textDissertation-Reproduction (electronic)
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Graduate CollegeChemistry