Show simple item record

dc.contributor.advisorMann, Henry B.en_US
dc.contributor.authorWou, Ying Fou
dc.creatorWou, Ying Fouen_US
dc.date.accessioned2013-04-18T09:20:08Z
dc.date.available2013-04-18T09:20:08Z
dc.date.issued1980en_US
dc.identifier.urihttp://hdl.handle.net/10150/281903
dc.description.abstractIn this paper we prove that every element in the finite Abelian group Z(p) x Z(p) can be written as a sum over a subset of the set A, where A is any set of non-zero elements of Z(p) x Z(p) with
dc.description.abstractA
dc.description.abstract= 2p - 2.
dc.language.isoen_USen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectAbelian groups.en_US
dc.subjectAdditive functions.en_US
dc.subjectFunctions, Abelian.en_US
dc.titleAN ADDITION THEORY FOR THE ELEMENTARY FINITE ABELIAN GROUP OF TYPE (P X P)en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.identifier.oclc8140755en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest8107446en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineMathematicsen_US
thesis.degree.namePh.D.en_US
dc.identifier.bibrecord.b18053397en_US
refterms.dateFOA2018-05-30T10:26:45Z
html.description.abstractIn this paper we prove that every element in the finite Abelian group Z(p) x Z(p) can be written as a sum over a subset of the set A, where A is any set of non-zero elements of Z(p) x Z(p) with
html.description.abstractA
html.description.abstract= 2p - 2.


Files in this item

Thumbnail
Name:
azu_td_8107446_sip1_m.pdf
Size:
1.377Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record